Hydrocracking of α-Cellulose Using Co, Ni, and Pd Supported on Mordenite Catalysts


Wega Trisunaryanti(1*), Triyono Triyono(2), Ria Armunanto(3), Lathifah Puji Hastuti(4), Desinta Dwi Ristiana(5), Resi Vita Ginting(6)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author


Hydrocracking of α-cellulose has been conducted in a semi-batch reactor at 400, 450, and 500 °C with hydrogen flow (30 mL/min.) for 4 h. Mordenite (MOR) and Co, Ni and Pd metal supported on the MOR were used as solid catalysts. The catalysts were characterized using X-ray Diffractometer (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) to evaluate the physical-chemical properties. Energy Dispersive X-ray (EDX) and Inductively Coupled Plasma (ICP) were used to analyze the amount of metal impregnated on the catalysts. The liquid product was analyzed using Gas Chromatograph-Mass Spectroscopy (GC-MS). Thermal hydrocracking was also conducted at 450 °C with the amount of liquid product was 37.86 wt.%. The highest liquid conversion obtained by mordenite catalyst was 94.66 wt.% at 450 °C and the highest liquid conversion (98.08 wt.%) was reached by Pd/MOR catalyst at 400 °C.


hydrocracking; α-cellulose; mordenite

Full Text:

Full Text PDF


[1] Klemm, D., Heublein, B., Fink, H.P., and Bohn, A., 2005, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44 (22), 3358–3393.

[2] de Beeck, B.O., Dusselier, M., Geboers, J., Holsbeek, J., Morré, E., Oswald, S., Giebeler, L., and Sels, B.F., 2015, Direct catalytic conversion of cellulose to liquid straight-chain alkanes, Energy Environ. Sci., 8 (1), 230–240.

[3] Wang, A., and Zhang, T., 2013, One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts, Acc. Chem. Res., 46 (7), 1377–1386.

[4] Wang, F.F., Liu, J., Li, H., Liu, C.L., Yang, R.Z., and Dong, W.S., 2015, Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10, Green Chem., 17 (4), 2455–2463.

[5] Zhou, C.H., Xia, X., Lin, C.X., Tong, D.S., and Beltramini, J., 2011, Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels, Chem. Soc. Rev., 40 (11), 5588–5617.

[6] Yao, G., Zeng, X., Li, Q., Wang, Y., Jing, Z., and Jin, F., 2012, Direct and highly efficient reduction of NiO into Ni with cellulose under hydrothermal conditions, Ind. Eng. Chem. Res., 51 (23), 7853–7858.

[7] Wang, F., Wang, Y., Jin, F., Yao, G., Huo, Z., Zeng, X., and Jing, Z., 2014, One-pot hydrothermal conversion of cellulose into organic acids with CuO as an oxidant, Ind. Eng. Chem. Res., 53 (19), 7939–7946.

[8] Zhang, L., Ruan, D., and Gao, S., 2002, Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution, J. Polym. Sci., Part B: Polym. Phys., 40 (14), 1521–1529.

[9] Cai, J., and Zhang, L., 2005, Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions, Macromol. Biosci., 5 (6), 539–548.

[10] Swatloski, R.P., Spear, S.K., Holbrey, J.D., and Rogers, R.D., 2002, Dissolution of cellulose with ionic liquids, J. Am. Chem. Soc., 124 (18), 4974–4975.

[11] Liu, B., Zhang, Z., and Zhao, Z.K., 2013, Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids, Chem. Eng. J., 215-216, 517–521.

[12] Mathew, M.D., Gopal, M., and Banerjee, S.K., 1984, Preparation of oxalic acid from jute stick, an agrowaste, Agric. Wastes., 11 (1), 47–59.

[13] Fukuoka, A., and Dhepe, P.L., 2006, Catalytic conversion of cellulose into sugar alcohols, Angew. Chem. Int. Ed., 45 (31), 5161–5163.

[14] Van de Vyver, S., Geboers, J., Schutyser, W., Dusselier, M., Eloy, P., Dornez, E., Seo, J.W., M. Courtin, C.M. Gaigneaux, E.M., Jacobs, P.A., and Sels, B.F., 2012, Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose, ChemSusChem, 5 (8), 1549−1558.

[15] Van de Vyver, S., Geboers, J., Dusselier, M., Schepers, H., Vosch, T., Zhang, L., Van Tendeloo, G., Jacobs, P. A., and Sels, B.F., 2010, Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers, ChemSusChem, 3 (6), 698–701.

[16] Ding, L.N., Wang, A.Q., Zheng, M.Y., and Zhang, T., 2010, Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalyst, ChemSusChem, 3 (7), 818−821.

[17] Wang, H., Zhu, L., Peng, S., Peng, F., Yu, H., and Yang, J., 2012, High efficient conversion of cellulose to polyols with Ru/CNTs as catalyst, Renewable Energy, 37 (1), 192–196.

[18] Pang, J., Wang, A., Zheng, M., Zhang, Y., Huang, Y., Chen, X., and Zhang, T., 2012, Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts, Green Chem., 14 (3), 614−617.

[19] Liu, M., Deng, W., Zhang, Q., Wang, Y., and Wang, Y., 2011, Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions, Chem. Commun., 47 (34), 9717−9719.

[20] Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X., and Chen, J.G., 2008, Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts, Angew. Chem. Int. Ed., 47 (44), 8510–8513.

[21] Rinaldi, R., and Schüth, F., 2009, Acid hydrolysis of cellulose as the entry point into biorefinery schemes, ChemSusChem, 2 (12), 1096–1107.

[22] Usui, K., Kidena, K., Murata, S., Nomura, M., and Trisunaryanti, W., 2004, Catalytic hydrocracking of petroleum-derived asphaltenes by transition metal-loaded zeolite catalysts, J. Fuel., 83 (14-15), 1899–1906.

[23] Trisunaryanti, W., Triyono, Mudasir, dan Syoufian, A., 2010, Multiple regression analysis of the influence of catalyst characters supported on ɣ-Al2O3 towards their hydrocracking conversion of asphaltene, Indones. J. Chem., 4 (1), 6–11.

[24] Ciciszwili, G.W., Andronikaszwili, T.G., Kirow, G.N., and Filizowa, L.D., 1990, Zeolity Naturalne, Warsaw Scientific and Technical Publishers, 160, 257–274.

[25] Webster, C.E., Drago, R.S., and Zerner, M.C., 1999, A Method for Characterizing Effective Pore Sizes of Catalysts, J. Am. Chem. B, 103 (8), 1242–1249.

[26] Mierczynski, P., Maniecki, T.P., Kaluzna-Czaplinska, J., Szynkowska, M.I., Maniukiewicz, W., Lason-Rydel, M., and Jozwiak, W.K., 2013, Hydroconversion of parafine LTP56-H over nickel/Na-mordenite catalysts, Cent. Eur. J. Chem., 11 (2), 304–312.

[27] Liu, K.L., Kubarev, A.V., Van Loon, J., Uji-i, H., De Vos, D.E., Hofkens, J., and Roeffaers, M.B.J., 2014, Rationalizing inter- and intracrystal heterogeneities in dealuminated acid mordenite zeolites by stimulated raman scattering microscopy correlated with super-resolution fluorescence microscopy, ACS Nano, 8 (12), 12650–12659.

[28] Beeckman, J.W., and Froment, G.F., 1979, Catalyst deactivation by active site coverage and pore blockage, Ind. Eng. Chem. Fundam., 18 (3), 245–256.

[29] Trisunaryanti, W., Triyono, Wijaya, K., Majid, A.B., Priastomo, Y., Febriyanti, E., Syafitri, Hasyyati, and Nugroho, A., 2012, Characterization and Activity Test of Mordenite and Y-zeolite Catalysts in Hydrocracking of Tire Waste to Fuel Fractions, Prosiding Seminar Nasional Kimia Unesa, C102–C113.

[30] Sriningsih, W., Saerodji, M.G., Trisunaryanti, W., Triyono, Armunanto, R., and Falah, I.I., 2014, Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co, and Co-Mo metals, Procedia Environ. Sci., 20, 215–224.

[31] Trisunaryanti, W., Purwono, S., and Putranto, A., 2008, Catalytic hydrocracking of waste lubricant oil into liquid fuel fraction using ZnO, Nb2O5, activated natural zeolite and their modification, Indones. J. Chem., 8 (3), 342–347.

[32] Aguado, J., Serrano, D.P., Escola, J.M., and Peral, A., 2009, Catalytic cracking of polyethylene over zeolite mordenite with enhanced textural properties, J. Anal. Appl. Pyrolysis, 85 (1-2), 352–358.

[33] Ribeiro, M.F., Ribeiro, F.R., Dufresne, P., and Marcilly, C., 1987, Influence of Si/Al ratio on the catalytic properties of NiH mordenite in the disproportionation of toluene, J. Mol. Catal., 39 (2), 269–276.

[34] Grau, J.M., and Parera, J.M., 1993, Conversion of heavy n-alkanes into light isomers over H-mordenite, platinum/H-mordenite, platinum/alumina and composite catalysts, Appl. Catal., A, 106 (1), 27–49.

[35] Ghoneim, S.A., and Aboul-Gheit, N.A.K., 2007, Effect of steam treatment on the activities of Pt/NH4MOR catalysts for n-pentane hydroisomerization and hydrocracking, J. Chin. Inst. Chem. Eng., 38, 251–258.

[36] Chao, K., Wu, H., and Leu, L., 1996, Hydroisomerization of light normal paraffins over series of platinum-loaded mordenite and beta catalysts, Appl. Catal., A, 143 (2), 223–243.

[37] Majdan, M., Kowalska-Ternes, M., Pikus, S., Staszczuk, P., Skrzypek, H., and Zięba, E., 2003, Vibrational and scanning electron microscopy study of the mordenite modified by Mn, Co, Ni, Cu, Zn and Cd, J. Mol. Struct., 649 (3), 279–285.

[38] Salim, I., Trisunaryanti, W., Triyono, and Arryanto, Y., 2016, Hydrocracking of coconut oil into gasoline fraction using Ni/modified natural zeolite catalyst, Int. J. ChemTech Res., 9, 492–500.

[39] Khabib, I., Kadarwati, S., and Wahyuni, S., 2014, Deactivation and regeneration of Ni/ZA catalyst in hydrocracking of polypropylene, Indones. J. Chem., 14 (2), 192–198.

[40] Burbridge, B.W., Keen, I.M., and Eyles, M.K., 1971, Physical and catalytic properties of the zeolite mordenite, Adv. Chem., 102 (71), 400–409.

[41] Pongsendana, M., Trisunaryanti, W., Artanti, F.W., Falah, I.I., and Sutarno., 2017, Hydrocracking of waste lubricant into gasoline fraction over CoMo catalyst supported on mesoporous carbon from bovine bone gelatin, Korean J. Chem. Eng., 34 (10), 2591–2596.

[42] Samsualam, N., Trisunaryanti, W., Sutarno, and Falah, I.I., 2016, Mesoporous silica impregnated by Ni and NiMo as catalysts for hydrocracking of waste lubricant, Int. J. ChemTech Res., 9 (9), 607–614.

[43] Trisunaryanti, W., Falah, I.I., Sutarno, Ningtyas, A., Swasdika, F., and Ratna, D.A., 2016, Synthesis of Co, Ni, and Pd metals supported on mesoporous carbon as catalysts for hydrocracking of waste lubricant, Int. J. ChemTech Res., 9 (11), 96–103.

[44] Masykuroh, A., Trisunaryanti, W., Falah, I.I., and Sutarno, 2016, Preparation and characterization of Co and Co-Mo loaded on mesoporous silica for hydrocracking of waste lubricant, Int. J. ChemTech Res., 9 (9), 598–606.

[45] Khowatimy, F.A., Priastomo, Y., Febriyanti, E., Riyantoko, H., and Trisunaryanti, W., 2014, Study of waste lubricant hydrocracking into fuel fraction over the combination of Y-zeolite and ZnO catalyst, Procedia Environ. Sci., 20, 225–234.

[46] Wijaya, K., Baobalabuana, G., Trisunaryanti, W., and Syoufian, A., 2013, Hydrocracking of palm oil into biogasoline catalyzed by Cr/natural zeolite, Asian J. Chem., 25 (16), 8981–8986.

[47] Miyatani, Y., Yasuda, S., Su, Y., Kaneda, K., Murata, S., and Nomura, M., 1999, Hydrocracking of heavy petroleum oils over transition metal-loaded Y-type zeolites, J. Jpn. Pet. Inst., 42 (4), 246–251.

[48] Sie, S.T., 1993, Acid-catalyzed cracking of paraffinic hydrocarbon. 3. Evidence for the protonated cyclopropane mechanism form hydrocracking/hydro isomerization experiment, Ind. Eng. Chem. Res., 32, 403–408.

[49] Weitkamp, J., 2012, Catalytic hydrocracking-mechanisms and versatility of the Process, ChemCatChem, 4 (3), 292–306.

[50] Chen, L., Wang, X., Guo, X., Guo, H., Liu, H., and Chen, Y., 2007, In situ nanocrystalline HZSM-5 zeolites encaged heteropoly acid H3PMo12O14 and Ni catalyst for hydroconversion of N-octane, Chem. Eng. Sci., 62 (16), 4469–4478.

[51] Yang, Q., Chen, Y.Z., Wang, Z.U., Xu, Q., and Jiang, H.L., 2015, One-pot tandem catalysis over Pd@MIL-101: Boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation, Chem. Commun., 51 (52), 10419–10422.

[52] Xu, C., Shen, P.K., and Liu, Y., 2007, Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide, J. Power Sources, 164 (2), 527–531.

DOI: https://doi.org/10.22146/ijc.26491

Article Metrics

Abstract views : 4362 | views : 3811

Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.