Study of Substituent Effect on Properties of Platinum(II) Porphyrin Semiconductor Using Density Functional Theory

Harno Dwi Pranowo(1*), Fadjar Mulya(2), Hafiz Aji Aziz(3), Grisani Ambar Santoso(4)

(1) Austrian-Indonesian Centre for Computational Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
(2) Austrian-Indonesian Centre for Computational Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
(3) Austrian-Indonesian Centre for Computational Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
(4) Austrian-Indonesian Centre for Computational Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281, Indonesia
(*) Corresponding Author


Study of substituent effect on properties of platinum(II) porphyrin had been performed using DFT method. The aim of the study is to investigate the effect of substituent group on the electronic and optical properties of the platinum(II) porphyrin. Geometry optimization was conducted using DFT/B3LYP/LANL2DZ to obtain molecular structure, electronic structure and energy profile. Band gap energy (Eg), the density of states (DOS), and UV-visible spectra are the semiconductor parameters to study. Computational results show that platinum(II) porphyrin and substituted platinum(II) porphyrin have properties of semiconductor based on Eg value, DOS, and UV-visible spectra. The results show that Mulliken partial charges of electron withdrawing substituents are higher than the electron donating substituents (CH3, OH, and NH2). Eg values of the complexes with respect to the substituents follow this order: NH2 < OH < NO2 < COOH < I < CH3 < Br < F < H, for DOSHOMO values, the order is CH3 < NO2 < I < OH < F < NH2 < COOH < Br < H and the maximum wavelength (λmax) for UV-visible adsorption spectra follows this order: NH2 > OH > COOH > NO2 > I > Br > CH3 > F > H. Molecules with smaller Eg and DOSHOMO values and higher λmax are considered as the most appropriate semiconductor materials. Our results show that Pt(II)P-NH2 has the smallest Eg and the highest λmax among other substituted platinum(II) porphyrin molecules. Therefore, Pt(II)P-NH2 are the most suitable semiconductor material based on the aforementioned criteria.


platinum(II) porphyrin; semiconductor; substituent effect

Full Text:

Full Text PDF


[1] Sessler, J.L., and Weghorn, S.J., 1997, Expanded, Contracted, and Isomeric Porphyrins; Tetrahedron Organic Chemistry Series; 1st ed., vol. 15, Pergamon Press, Oxford, U.K.

[2] Utari, Kusumandari, Purnama, B., Mudasir, and Abraha, K., 2016, Surface morphology of Fe(III)-porphyrin thin layers as characterized by atomic force microscopy, Indones. J. Chem., 16 (3), 233–238.

[3] Harrach, G., Valiscek, Z., and Horvath, O., 2011, Water soluble silver(II) and gold(III) porphyrins: The effect of structural distortion on the photophysical and photochemical behavior, Inorg. Chem. Commun., 14 (11), 1756–1761.

[4] Zheng, W., Shan, N., Yu, L., and Wang, X., 2008, UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins, Dyes Pigm., 77 (1), 153–157.

[5] Amao, Y., Yamada, Y., and Aoki, K., 2004, Preparation and properties of dye-sensitized solar cells using chlorophyll derivative immobilized TiO2 film electrode, J. Photochem. Photobiol., A, 164 (1-3), 47–51.

[6] Wang, X.F., Xiang, J., Wang, P., Koyama, Y., Yanagida, S., Wada, Y., Hamada, K., Sasaki, S., and Tamiaki, H., 2005, Dye-sensitized solar cells using chlorophyll a derivative as the sensitizer and carotenoid having different conjugation length as redox spacers, Chem. Phys. Lett., 408 (4-6), 409–414.

[7] Zhang, C.R., Han, L.H., Zhe, J.W., Jin, N.Z., Shen, Y.L., Gong, J.J., Zhang, H.M., Chen, H.Y., and Liu, Z.J., 2014, The role of terminal groups in electronic structures and related properties: The case of push-pull porphyrin dye sensitized for solar cells, Comput. Theor. Chem., 1039, 62–70.

[8] Mulya, F, Santoso, G.A., Aziz, H.A, and Pranowo H.D., 2016, Design a better metalloporphyrin semiconductor: A theoretical studies on the effect of substituents and central ions, AIP Conf. Proc., 1755 (1), 080006.

[9] Aziz, H.A., Santoso, G.A., Mulya, F., and Pranowo H.D., 2017, Molecular and electronic structure of some symmetrically meso-substituted Hg(II)-porphyrin complexes, Asian J. Chem., 29 (10), 2224–2226.

[10] Shalabi, A.S., Assem, M.A., Soliman, K.A., El Mahdy, A.M., and Taha, H.O., 2014, Performance of metalloporphyrin malonic acid as dye-sensitized solar cells assessed by density functional theory, Mater. Sci. Semicond. Process., 26, 119–129.

[11] Tai, C.K., Chuang, W.H., and Wang, B.C., 2013, Substituted group and side chain effects for the porphyrin and zinc(II)-porphyrin derivatives: A DFT and TD-DFT study, J. Lumin., 142, 8–16.

[12] Barbee, J., and Kuznetsov, A.E., 2012, Revealing substituent effects on the electronic structure and planarity of Ni-porphyrins, Comput. Theor. Chem., 981, 73–85.

[13] Rovira, C., Kunc, K., Hutter, J., Ballone, P., and Parrinello, M., 1997, Equilibrium geometries and electronic structure of iron-porphyrins complexes: A density functional study, J. Phys. Chem. A, 1001 (47), 8914–8925.

[14] Paul-Roth, C.O., Drouet, S., Merhi, A., Williams, J.A.G., Gildea, L.F., Pearson, C., and Petty, M.C., 2013, Synthesis of platinum complexes of fluorenyl-substituted porphyrin used as phosphorescent dyes for solution-processed organic light-emitting devices, Tetrahedron, 69, 9625–9632.

[15] Chen, H.C., Hetterscheid, D.G.H., Williams, R.M., van der Vlugt, J., Reek, J.N.H., and Brouwer, A.M., 2009, Platinum(II) porphyrin as a sensitizer for visible-light driven water oxidation in neutral phosphate buffer, Energy Environ. Sci., 8 (3), 975–982.

[16] Mink, L.M., Neitzel, M.L., Bellomy, L.M., Falvo, R.E., Boggess, R.K., Trainum, B.T., and Yeaman, P., 1997, Platinum(II) and platinum(IV) porphyrin complexes: Synthesis, characterization, and electrochemistry, Polyhedron, 16 (16), 2809–2817.

[17] Milgrom, L.R., Zuurbier, R.J, Gascoyne, J.M., Thompsett, D., and Moore, B.C., 1994, Platinum porphyrins-V. Multinuclear NMR of some platinum(IV) porphyrins, Polyhedron, 13 (2), 209–214.

[18] Milgrom, L.R., Sheppard, R., Slawin, A.M.Z., and Williams, D., 1988, X-ray crystal structure of 2,3,7,8,12,13,17,18-octaethylpoprhyrinatoplatinum(II) (PtOEP): Potential for correlation of meso-carbon bond-angle with one bond coupling constant in some diamagnetic metal complex of OEP, Polyhedron, 7 (1), 57–61.

[19] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr.J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., 2009, Gaussian, Gaussian, Inc., Wallingford, CT.

[20] O’Boyle, N.M, Tenderholt, A.L., and Langner, K.M., 2008, cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem., 29 (5), 839–845.

[21] Young, D.C, 2001, Computational Chemistry, John Wiley & Sons, New York.

[22] West, A.R, 1989, Solid State Chemistry and Its Applications, John Wiley & Sons, Singapore.

[23] Martins, J.L., 1999, Density Functional Theory, VUB University Press, Brussels.

[24] Yu, P.Y., and Cardona, M., 2010, Fundamentals of Semiconductors – Physics and Materials Properties, Springer, Heidelberg.

[25] Kruse, H., Goerigk, L., and Grimme, S., 2012, Why the standard B3LYP/6-31* model chemistry should not be used in DFT calculations of molecular thermochemistry: Understanding and correcting the problems, J. Org. Chem., 77 (23), 10824–10834.

[26] Bryantsev, V.S., Diallo, M.S., van Duin, A.C.T., and Goddard III, W.A., 2009, Evaluation of B3LYP, X3LYP and M06-class density functional for predicting binding energies of neutral, protonated and deprotonated water clusters, J. Chem. Theory Comput., 5 (4), 1016–1026.

[27] Mitchell, B.S., 2004, An Introduction to Material Engineering and Science for Chemicals and Material Engineers, Wiley Interscience, New Jersey.


Article Metrics

Abstract views : 1421 | views : 1657

Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.