The Effect of Ingredients Mixing Sequence in Rubber Compounding upon Vulcanization Kinetics of Natural Rubber: An Autocatalytic Model Study

Abu Hasan(1*), Rochmadi Rochmadi(2), Hary Sulistyo(3), Suharto Honggokusumo(4)

(1) Department of Chemical Engineering, State Polytechnic of Sriwijaya, Jl. Srijaya Negara, Bukit Besar, Palembang 30139, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika no 2, Yogyakarta 55281, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika no 2, Yogyakarta 55281, Indonesia
(4) Gapkindo (The Indonesian Rubber Association), Jl. Cideng Barat no 62A, Jakarta 10150, Indonesia
(*) Corresponding Author


This study examined the effect of ingredients mixing sequence to the vulcanization kinetics of natural rubber. The effects of mixing temperature, vulcanization temperature, and the carbon black type upon the kinetics were also studied by using rheography and an autocatalysis reaction model approach. The results showed that this model is good in providing information on vulcanization reaction kinetics of natural rubber. High vulcanization temperature resulted in high reaction rate constant. The more black carbon mixed at the beginning of the rubber mixing process, the higher reaction rate constant would be. The mixing of carbon black and rubber chemicals mixed into the rubber subsequently resulted in the higher reaction rate constant compared with that of simultaneously.


autocatalysis; kinetics; mixing sequence; natural rubber

Full Text:

Full Text PDF


[1] Morton, M., 1987, Rubber Technology, 3rd ed., Van Nostrand Reinhold, New York.

[2] Fath, M.A., 1993, Vulcanization of Elastomers, Rubber World, 208 (8), 15-17.

[3] Coran, A.Y., 1995, Vulcanization: Conventional and dynamic, Rubber Chem. Technol., 68 (3), 351–375.

[4] Krejsa, M.R and Koenig, J.L., 1993, A review of sulfur crosslinking fundamentals for accelerated and unaccelerated vulcanization, Rubber Chem. Technol., 66 (3), 376–410.

[5] Nampitch, T., and Buakaew, P., 2006, The effect of curing parameters on the mechanical properties of styrene-NR elastomers containing natural rubber-graft-polystyrene, Kasetsart J. (Nat. Sci.), 40 (Suppl.), 7–16.

[6] Le Bideau, P., Ploteau, J.P., Dutounié, P., and Glouannec, P., 2009, Experimental and modeling study of superficial elastomer vulcanization by short wave infrared radiation, Int. J. Therm. Sci., 48 (3), 573–582.

[7] Jaunich, M., Stark, W., and Hoster, B., 2009, Monitoring the vulcanization of elastomers: Comparison of curemeter and ultrasonic online control, Polym. Test., 28 (1), 84–88.

[8] Dobrotă, D., 2015, Vulcanization of rubber conveyor belts with metallic insertion using ultrasounds, Procedia Eng., 100, 1160–1166.

[9] Salgueiro, W., Samoza, A., Torriani, I.L., and Marzocca, A.J., 2007, Cure temperature influence on natural rubber – A small angle X-ray scattering study, J. Polym. Sci., Part B: Polym. Phys., 45, 2966–2971.

[10] Pazur, R.J., Walker, F.J., and Plymout, M.I., 2011, Practical state of cure measurements by nuclear magnetic resonance, KGK Prüfen und Messen, 64 (1-2), 16–23.

[11] Lu, Y.L., Ye, F.Y., Mao, L.X., Li, Y., and Zhang, L.Q., 2011, Micro-structural evolution of rubber/clay nanocomposites with vulcanization process, eXPRESS Polym. Lett., 5 (9), 777–787.

[12] Chough S.H., and Chang, Dong-Ho, 1996, Kinetics of sulfur vulcanization of NR, BR, SBR, and their blends using a rheometer and DSC, J. Appl. Polym. Sci., 61 (3), 449–454.

[13] López‐Manchado M.A., Arroyo, M., Herrero, J., and Biagiotti, J., 2003, Vulcanization kinetics of natural rubber-organoclay nanocomposites, J. Appl. Polym. Sci., 89 (1), 1–15.

[14] Ding, R., Leonov, A.I., and Coran, A.Y., 1996, A Study of the vulcanization kinetics of an accelerated sulfur SBR compound, Rubber. Chem. Technol., 69 (1), 81–91.

[15] He, X.R., Yu, H., Rong, Y.Q., Zhang, R., and Huang, G.S., 2014, A study of non-isothermal kinetic reaction for vulcanization of chloride butyl rubber via phenol formaldehyde resin, Int. Polym. Proc., 29 (3), 342–349.

[16] Chonkaew, W., Minghvanish, W., Kungliean, U., Rochanawipart, N., and Brostow, W., 2011, Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica, J. Nanosci. Nanotechnol., 11 (3), 2018–2024.

[17] Wang, P.Y., Qian, H.L., Yu, H.P., and Chen, J., 2003, Study on kinetics of natural rubber vulcanization by using vulcameter, J. Appl. Polym. Sci., 88, 680–684.

[18] Wang, P.Y., Qinn, H.L., and Yu, H.P., 2006, Kinetics of natural rubber vulcanization in the end stage of curing period, J. Appl. Polym. Sci., 101 (1), 580–583.

[19] Wang, P.Y., Chen, Y., and Qian, H.L., 2007, Vulcanization kinetics of low-protein natural rubber with use of vulcameter. J. Appl. Polym. Sci., 105 (6), 3255–3259.

[20] Ding, R., and Leonov, A.I., 1996, A kinetics model for sulfur accelerated vulcanization of a natural rubber compound, J. Appl. Polym. Sci., 61 (3), 455–463.

[21] da Costa, H.M., Visconte, L.L.Y., and Nunes, R.C.R., 2003, Vulcanization kinetics of  natural rubber filled with rice husk ash, Polímeros, 13 (2), 102–106.

[22] Bateman, L., Moore, C.G., Porter, M., and Saville, B., 1963, “Chemistry of Vulcanization” in The Chemistry and Physics of Rubber Like Substances: Study of the Natural Rubber Producers’ Research Association, MacLaren & Sons ltd., London, 449–561.

[23] Hasan, A., Rochmadi, Sulistyo, H., and Honggokusumo, S., 2013, Vulcanization kinetics of natural rubber based on free sulfur determination, Indones. J. Chem., 13(1), 21–27.

[24]  Konar B.B., and Saha, M., 2012, Influence of polymer coated CaCO3 on vulcanization kinetics of natural rubber/sulfur/N-oxydiethyl benzthiazyl sulfenamide (BSM) system, J. Macromol. Sci. Part A Pure Appl. Chem., 49 (3), 214–226

[25] Khang, T.H., and Ariff, Z.M., 2012, Vulcanization kinetics study of natural rubber compounds having different formulation variables, J. Therm. Anal. Calorim., 109 (3), 1545–1553.

[26] Milani, G., Hanel, T., Donetti, R., and Milani, F., 2015, A closed form solution for the vulcanization prediction of NR cured with sulphur and different accelerators, J. Math. Chem., 53 (4), 975–997.

[27] Rajan, R., Varghese, S., and George, K.E., 2013, Role of coagents in peroxide vulcanization of natural rubber, Rubber. Chem. Technol., 86 (3), 488–502.

[28] Wu, J., Xing, W., Huang, G., Li, H., Tang, M., Wu, S., and Liu, Y., 2013, Vulcanization kinetics of graphene/natural rubber nanocomposites, Polymer, 54 (13), 3314–3323.

[29] Isayev, A.I., and Sujan, B., 2006, Nonisothermal vulcanization of devulcanized GRT with reversion type behavior, J. Elastomers Plast., 38 (4), 291–318.

[30] Sutanto, P., Laksmana, F.L., Picchioni, E., Janssen, L.P.B.M., and Picchioni, F., 2006, Modeling on the kinetics of an EPDM devulcanization in an internal batch mixer using an amine as the devulcanizing agent, Chem. Eng. Sci., 61(19), 6442–6453.

[31] Pajarito, B.B., de Torres, C.A., and Maningding, M., 2014, Effect of ingredient loading on surface migration kinetics of additives in vulcanized natural rubber compounds, Sci. Diliman, 26 (2) 21–39.

[32] Ahsan, Q., Mohamad, N., and Soh, T.C., 2015, Effects of accelerators on the cure characteristics and mechanical properties of natural rubber compounds, Int. J. Automot. Mech. Eng., 12, 2954–2966.

[33] Samaržija-Jovanović, S., Jovanović, V., and Marković, G., 2008, Thermal and vulcanization kinetic behaviour of acrylonitrile butadiene rubber reinforced by carbon black, J. Therm. Anal. Calorim., 94 (3), 797–803.

[34] Vega, B., Kraushaar, C., Agulló, N., and Borrós, S., 2008, Reaction stage modeling (RSM) study: Diphenyl disulfide (DPDS) effect in monosulfidic and disulfidic crosslinks under microwave heating, KGK Elastomere und Kunststoffe, 61 (7-8), 390–393.

[35] Mahaling, R.N., Kumar, S., Rath, T., and Das, C.K., 2007, Effects of rubber filler interaction on the developments of physical, mechanical, and interfacial properties of vamac_silica nano-composites, J. Elastomers Plast., 39, 253-268.

[36] Sangwichien, C., Sumanatrakool, P., and Patarapaiboolchai, O., 2008, Effect of filler loading on curing characteristics and mechanical properties of thermoplastic vulcanizate, Chiang Mai J. Sci., 35 (1), 141–149.

[37] Wang, Y., Wang, Y., Tian, M., Zhang, L., and Ma, J., 2008, Influence of prolonging vulcanization on the structure and properties of hard rubber, J. Appl. Polym. Sci., 107 (1), 444–454.

[38] Mohamad, N., Muchtar, A., Ghazali, M.J., Mohd, D., and Azhari, C.H., 2008, The effect of filler on epoxidised natural rubber-alumina nanoparticles composites, Eur. J. Sci. Res., 24 (4), 538–547.

[39] Choi, W., 2006, The main mechanism and cross-linking structure for accelerated sulfur vulcanization, e-J. Soft Mater., 2, 47–55.

[40] Likozar, B., and Krajnc, M., 2007, Kinetic and heat transfer modeling of rubber blends’ sulfur vulcanization with N-t-butylbenzothiazole-sulfenamide and N,N-di-t-butylbenzothiazole-sulfenamide, J. Appl. Polym. Sci., 103 (1), 293–307.

[41] Leroy, E., Souid, A., and Deterre, R., 2013, A continuous kinetic model of rubber vulcanization predicting induction and reversion, Polym. Test., 32 (3), 575–582.

[42] Wang, M.J., 2006, Effect of Polymer-Filler Interaction on Abrasion Resistance of Filled Rubber Vulcanizates, International Rubber Conference (IRC 2006), Lyon, France, 16-18 May 2006.


Article Metrics

Abstract views : 466 | views : 342

Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.