The Effect of Pseudomonas aeruginosa Addition on 1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) Biodegradation by Brown-rot Fungus Fomitopsis pinicola

https://doi.org/10.22146/ijc.25158

Atmira Sariwati(1), Adi Setyo Purnomo(2*)

(1) Department of Chemistry, Faculty of Science, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Jl. KH Wahid Hasyim No. 65, Kediri 64114, Indonesia
(2) Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Jl. Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(*) Corresponding Author

Abstract


Effect of addition of Pseudomonas aeruginosa on 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) biodegradation by Fomitopsis pinicola had been investigated. P. aeruginosa was added into F. pinicola culture at 1, 3, 5, 7 and 10 mL (1 mL ≈ 1.53 x 109 P. aeruginosa bacteria cells/mL culture). The addition of 10 mL of P. aeruginosa showed the highest DDT biodegradation approximately 68% during 7 days incubation in Potato Dextrose Broth (PDB) medium, which was higher than biodegradation of DDT by F. pinicola only (42%) at the same incubation time. 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) and 1-chloro-2,2-bis(4-chlorophenyl)ethylene (DDMU) were detected as metabolites from DDT biodegradation by mixed cultures of F. pinicola and P. aeruginosa.

Keywords


biodegradation; DDT; Fomitopsis pinicola; Pseudomonas aeruginosa

Full Text:

Full Text PDF


References

[1] Hai, F.I., Modin, O., Yamamoto, K., Fukushi, K., Nakajima, F., and Nghiem, L.D., 2012, Pesticides removal by a mixed culture of bacteria and white rot fungi, J. Taiwan Ins. Chem. Eng., 43 (3), 459–462.

[2] Sudharshan, S., Naidu, R., Mallavarapu, M., and Bolan, N., 2012, DDT remediation in contaminated soils: A review recent studies, Biodegradation, 23 (6), 851–863.

[3] Fang, H., Dong, B., Yan, H., Tang, F., and Yu, Y., 2010, Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil, J. Hazard. Mater., 184 (1-3), 281–289.

[4] Nawas, K., Hussain, K., Choundary, N., Majeed, A., Ilyas, U., Ghani, A., Lin, F., Ali, K., Afghan, S., Raza, G., and Lashari, M.I., 2004, Ecofriendly role of biodegradation against agricultural pesticides hazards, Afr. J. Microbiol. Res., 5 (3), 177–183.

[5] Cutright, T.J., and Erdem, Z., 2012, Overview of the bioremediation and the degradation pathways of DDT, J. Adnan Menderes Univ. Agric. Fac., 9 (2), 39–45.

[6] Wang, S., Nomura, N., Nakajima,T., and Uchiyama, H., 2012, Case study of the relation ship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation, J. Biosci. Bioeng., 113 (5), 624–630.

[7] Purnomo, A.S., Kamei, I., and Kondo, R., 2008, Degradation of 1,1,1-trichlro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi, J. Biosci. Bioeng., 105 (6), 614–621.

[8] Powthong, P., Jantrapanukorn, B., and Suntornthiticharoen, P., 2016, Isolation, Identification and analysis of DDT-degrading bacteria for agriculture area improvements, J. Food Agric. Environ., 14 (1), 131–136.

[9] Barragán-Huerta, B.E., Costa-Pérez, C., Peralta-Cruz, J., Barrera-Cortés, J., Esparza-García, F., and Rodrígues-Vázquez, R, 2007, Biodegradation of organochlorine pesticides by bacteria grown in microniches of the porous structure of green bean coffee, Int. Biodeterior. Biodegrad., 59 (3), 239–244.

[10] Ellegard-Jensen, L., Knudsen, B.E., Johansen, A., Albers, C.N., Aamand, J., and Rosendahl, S., 2014, Fungal-bacterial consortia increase diuron degradation in water-unsaturated system, Sci. Total Environ., 466-467, 699–705.

[11] Lade, H.S., Waghmode, T.R., Kadam, A.A., and Govindwar, S.P., 2012, Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium, Int. Biodeterior. Biodegrad., 72, 94–107.

[12] Jacques, R.J.S., Okeke, B.C., Bento, F.M., Teixeira, A.S., Peralba, M.C.R., and Camargo, F.A.O., 2008, Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil, Bioresour. Technol., 99 (7), 2637–2643.

[13] Hua, F., and Wang, H.Q., 2014, Uptake and trans-membran transport of petroleum hydrocarbons by microorganism, Biotechnol. Biotechnol. Equip., 28 (2), 165–175.

[14] Moussa, T.A.A., Mohamed, M.S., and Samak, N., 2014, Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN, Braz. J. Chem. Eng., 31 (4), 867-880.

[15] Wahyuni, S., Suhartono, M.T., Khaeruni, A., Purnomo, A.S., Asranudin, Holilah, and Riupassa, P.A., 2016, Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production, Asian J. Chem., 28 (12), 2731–2736.

[16] Purnomo, A.S., Mori, T., and Kondo, R., 2010, Involvement of Fenton reaction in DDT degradation by brown-rot fungi, Int. Biodeterior. Biodegrad., 64 (7), 560–565.

[17] Purnomo, A.S., Mori, T., Takagi, K., and Kondo, R., 2011, Bioremediation of DDT contaminated soil using brown-rot fungi, Int. Biodeterior. Biodegrad., 65 (5), 691–695.

[18] Purnomo, A.S., Koyama, F., Mori, T., and Kondo, R., 2010, DDT degradation potential of cattle manure compost, Chemosphere, 80 (6), 619–624.

[19] Purnomo, A.S., Mori, T., Kamei, I., Nishii, T., and Kondo, R., 2010, Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil, Int. Biodeterior. Biodegrad., 64 (5), 397–402.

[20] Purnomo, A.S., Mori, T., Kamei, I., and Kondo, R., 2011, Basic studies and applications on bioremediation of DDT: A review, Int. Biodeterior. Biodegrad., 65 (7), 921–930.

[21] Purnomo, A.S., Mori, T., Putra, S.R., and Kondo, R., 2013, Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus, Int. Biodeterior. Biodegrad., 82, 40–44.

[22] Purnomo, A.S., Putra, S.R., Shimizu, K., and Kondo, R., 2014, Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula, Environ. Sci. Pollut. Res., 21 (19), 11305–11312.

[23] Karigar, C.S., and Rao, S.S., 2011, Role of microbial enzymes in the bioremediation of pollutants: A review, Enzyme Res., 2011, 805187.

[24] Oprică, L., Olteanu, Z., Cojocoru, D., Zamfirache, M.M., Tănase, C., and Chinan, V.C., 2008, Oxydoreductase activity of the some fungi harvesting from different Calimani National Park areas, Analele Ştiinţifice ale Universităţii, Secţiunea Genetică şi Biologie Moleculară, TOM IX, 55–60.

[25] Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav, J.S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P.M., de Vries, R.P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Górecki, P., Heitman, J., Hesse, C., Hori. C., Igarashi, K., Jurgens, J.A., Kallen, N., Kersten. P., Kohler, A,, Kües, U., Kumar, T.K., Kuo, A., LaButti, K., Larrondo, L.F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D.J., Morgenstern, I., Morin, E., Murat, C., Nagy, L.G., Nolan, M., Ohm, R.A., Patyshakuliyeva, A., Rokas, A., Ruiz-Dueñas, F.J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J.C., St John, F., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D.C., Martin, F., Cullen, D., Grigoriev, I.V., and Hibbett, D.S., 2011, The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes, Science, 336 (6089), 1715–1719.

[26] Abdel-Mawgoud, A.M., Aboulwafa, M.M., and Hassouna, N.A., 2009, Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20, Appl. Biochem. Biotechnol., 157 (2), 329–345.

[27] Megharaj, M., Ramakrishnan, B., Vankateswarlu, K., Sethunathan, N., and Naidu, R., 2011, Review bioremediation approach for organic pollutants: A critical perspective, Environ. Int., 37 (8), 1362–1375.

[28] Joutey, N.T., Bahafid, W., Sayel, H., and El Ghachtouli, N., 2013, “Biodegradation: Involved Microorganism and Genetically Engineered Microorganism” in Biodegradation-Life of Science, Chamy, R., and Rosenkranz, F., Ed., InTechOpen, 290–320.

[29] Chan, W.Y., Wong, M., Guthrie, J., Savchenko, A.V., Yakunin, A.F., Pai, E.F., and Edwards, E.A, 2010, Sequence- and activity-based screening of microbial genomes for novel dehalogenases, Microb. Biotechnol., 3 (1), 107–120.

[30] Wang, G., Li, R., Li., S., and Jiang, J., 2010, A novel hydrolytic dehalogenase for the chlorinated aromatic compounds chlorothalonil, J. Bacteriol., 192 (11), 2737–2745.

[31] Li, F.B., Li, X.M., Zhou, S.G., Zhuang, L., Cao, F., Huang, D.Y., Xu, W., Liu, T.X, and Feng, C.H., 2010, Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide, Environ. Pollut., 158 (5), 1733–1740.

[32] Arora, P.K., Srivastava, A., and Singh, V.P., 2010, Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds, J. Biorem. Biodegrad., 1 (112), 1000112.

[33] Hodgson, E., Roe, R.M., and Chambers, J.E., 2015, Dictionary of Toxicology, 3rd ed., Elsevier Academic Press, United Kingdom, 106–107.

[34] An, W., Hu, J., Wan, Y., An, L., and Zhang, Z., 2006, Deriving site-specific 2,2-bis(chlorophenyl)-1,1-dichloroethylene quality criteria of water and sediment for protection common tern population in Bohay Bay North China, Environ. Sci. Technol., 40 (8), 2511–2516.



DOI: https://doi.org/10.22146/ijc.25158

Article Metrics

Abstract views : 4176 | views : 3123


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.