Cytotoxic Triterpenoids from the Stembark of Aglaia argentea (Meliaceae)

https://doi.org/10.22146/ijc.25052

Ace Tatang Hidayat(1), Kindi Farabi(2), Desi Harneti(3), Nurlelasari Nurlelasari(4), Rani Maharani(5), Ida Nurfarida(6), Unang Supratman(7*), Yoshihito Shiono(8)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
(6) Central Laboratory of Universitas Padjadjaran, Jatinangor 45363, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
(8) Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
(*) Corresponding Author

Abstract


Four dammarane-type triterpenoid compounds, dammar-24-en-3a-ol (1), 3-epi-cabraleahydroxy lactone (2), (E)-25-hydroperoxydammar-23-en-3b,20-diol (3), and dammar-24-en-3β,20-diol (4), were isolated from the methanolic extract of the stembark of Aglaia argentea. Compounds 1-4 were isolated for first time from this plant. The structure of isolated compounds were elucidated by spectroscopic methods including one and two-dimensional NMR as well as mass spectrometric analysis. Compounds, 1-4, along with a known synthetic analog, 20-hydroxy-dammar-24-en-3-on (5), were evaluated their cytotoxic activity against P-388 murine leukemia cells in vitro. The IC50 values of compounds, 1-5 were 9.09 ± 0.10, 68.53 ± 0.08, 5.89 ± 0.08, 22.40 ± 0.11, and 11.53 ± 0.08 µg/mL, respectively. Among the dammarane-type triterpenoids, compounds 1, 3, 4 and 5 having opened side chain showed the stronger activity, wheres compound 2 with cyclic side chain showed weak or no activity. In addition, compound 3 showed strongest activity, indicate that hydroperoxy group at side chain increase cytotoxic activity.

Keywords


Aglaia argentea; cytotoxic activity; dammarane-type triterpenoids; P-388 murine leukemia

Full Text:

Full Text PDF


References

[1] Cao, J., Zhang, X., Qu, F., Guo, Z., and Zhao, Y., 2015, Dammarane triterpenoids for pharmaceutical use: A patent review (2005-2014), Expert Opin. Ther. Pat., 25 (7), 805–817.

[2] Kim, D.H., 2012, Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng, J. Ginseng Res., 36 (1), 1–15.

[3] Yang, W.Z., Hu, Y., Wu, W.Y., Ye, M., and Guo, D., 2014, Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity, Phytochemistry, 106, 7–24.

[4] Connolly, J.D., and Hill, R.A., 2003, Triterpenoids, Nat. Prod. Rep., 20 (6), 640–659.

[5] Connolly, J.D., and Hill, R.A., 2008, Triterpenoids, Nat. Prod. Rep., 25 (4), 794–830.

[6] Kim, J.H., and Han, Y.N., 2011, Dammarane-type saponins from Gynostemma pentaphyllum, Phytochemistry, 72 (11-12), 1453–1459.

[7] Jia, L., Zhao, Y., and Liang, X.J., 2009, Current evaluation of the millennium phytomedicine— ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine, Curr. Med. Chem., 16 (22), 2924–2942.

[8] Kuo, R.Y., Qian, K., Morris-Natschke, S.L., and Lee, K.H., 2009, Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents, Nat. Prod. Rep., 26 (10), 1321–344.

[9] Man, S., Gao, W., Zhang, Y., Huang, L., and Liu, C., 2010, Chemical study and medical application of saponins as anti-cancer agents, Fitoterapia, 81 (7), 703–714.

[10] Pannell, C.M., 1992, A Taxonnomic Monograph of the Genus Aglaia Lour. (Meliaceae), Kew Bulletin Additional Series 16, London, H.M.S.O.

[11] Proksch, P., Edrada, R., Ebel, R.A., Bohnenstengel, F.I., and Nugroho, B.W., 2001, Chemistry and biological activity of rocaglamide derivatives and related compounds in Aglaia species (Meliaceae), Curr. Org. Chem., 5 (9), 923–938.

[12] Joycharat, N., Thammavong, S., Voravuthikunchai, S.P., Plodpai, P., Mitsuwan, W., Limsuwan, S., and Subhadhirasakul, S., 2010, Chemical constituents and antimicrobial properties of the essential oil and ethanol extract from the stem of Aglaia odorata Lour, Nat. Prod. Res., 28 (23), 2169–2172.

[13] Liu, S., Liu, S.B., Zuo, W.J., Guo, Z.K., Mei, W.L., and Dai, H.F., 2014, New sesquiterpenoids from Aglaia odorata var. microphyllina and their cytotoxic activity, Fitoterapia, 92, 93–99.

[14] Cai, X.H., Wang, Y.Y., Zhao, P.J., Li, Y., and Luo, X.D., 2010, Dolabellane diterpenoids from Aglaia odorata, Phytochemistry, 71 (8-9), 1020–1024.

[15] Yodsaoue, O., Sonprasit, J., Karalai, C., Ponglimanont, C., Tewtrakul, S., and Chantrapromma, S., 2012, Diterpenoids and triterpenoids with potential anti-inflammatory activity from the leaves of Aglaia odorata, Phytochemistry, 76, 83–91.

[16] Ishibashi, F., Satasook, C., Isman, M.B., and Towers, G.H.N., 1993, Insecticidal 1H-cyclopentatetrahydro[b]benzofurans from Aglaia odorata, Phytochemistry, 32 (2), 307–310.

[17] Wu, T.S., Liou, M.J., Kuoh, C.S., Teng, C.M., Nagao, T., and Lee, A.H., 1997, Cytotoxic and antiplatelet aggregation principles from Aglaia elliptifolia, J. Nat. Prod., 60 (6), 606–608.

[18] Nugroho, B.W., Edrada, R.A., Wray, V., Witte L., Bringmann, G., Gehling, M., and Proksch, P., 1999, An insecticidal rocaglamide derivatives and related compounds from Aglaia odorata (Meliaceae), Phytochemistry, 51 (3), 367–376.

[19] Wang, B.G., Ebel, R., Wang, C.Y., Edrada, R.A., Wray, V., and Proksch, P., 2004, Aglacins I−K, three highly methoxylated lignans from Aglaia cordata, J. Nat. Prod., 67 (4), 682–684.

[20] Sianturi, J., Harneti, D., Darwati, Mayanti, T., Supratman, U., and Awang, K., 2016, A New (–)-5′,6-dimethoxyisolariciresinol-(3″,4″-dimethoxy)-3α-O-β-D-glucopyranoside from the bark of Aglaia eximia (Meliaceae), J. Nat. Prod. Res., 30 (19), 2204–2208.

[21] Roux, D., Martin, M., Adeline, M., Sevenet, T., Hadi, A.H., and Pais, M., 1998, Foveolins A and B, dammarane triterpenes from Aglaia foveolata, Phytochemistry, 49 (6), 1745–1748.

[22] Mohamad, K., Sévenet, T., Dumontet, V., Paı̈s, M., Tri, M.V., Hadi, H., Awang, K., and Martin, M.T., 1999, Dammarane triterpenes and pregnane steroids from Aglaia lawii and A. tomentosa, Phytochemistry, 51 (8), 1031–1037.

[23] Harneti, D., Tjokronegoro, R., Safari, A., Supratman, U., Loong, X.M., Mukhtar, M.R., Mohamad, K., Awang, K., and Hayashi, H., 2012, Cytotoxic triterpenoids from the bark of Aglaia smithii (Meliaceae), Phytochem. Lett., 5 (3), 496–499.

[24] Harneti, D., Supriadin, A., Ulfah, M., Safari, A., Supratman, U., Awang, K., and Hayashi, H., 2014, Cytotoxic constituents from the bark of Aglaia eximia (Meliaceae), Phytochem. Lett., 8, 28–31.

[25] Sianturi, J., Purnamasari, M., Darwati., Harneti, D., Mayanti, T., Supratman, U., Awang, K., and Hayashi, H., 2015, New bisamide compounds from the bark of Aglaia eximia (Meliaceae), Phytochem. Lett., 13, 297–301.

[26] Alley, M.C., Scudiero, D.A., Monks, A., Hursey, M.L., Czerwinski, M.J., Fine, D.L., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., and Boyd, M.R., 1988, Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay, Cancer Res., 48 (3), 589–601.

[27] Hakim, E.H., Achmad, S.A., Juliawaty, L.D., Makmur, L., Syah, Y.M., Aimi, A., Kitajima, M., Takayama, H., and Ghisalberti, E.L., 2007, Prenylated flavonoids and related compounds of the Indonesian Artocarpus (Moraceae), J. Nat. Med., 61 (2), 229–236.

[28] Sahidin, Hakim, E.H., Juliawaty, L.D., Syah, Y.M., Din, L.B., Ghisalberti, E.L., Latip, J., Said, I.M., and Achmad, S.A., 2005, Cytotoxic Properties of Oligostilbenoids from the Tree Barks of Hopea dryobalanoides, Z. Naturforsch., C: Biosci., 60 (9-10), 723–727.

[29] Xie, B.J., Yang, S.P, Chen, H.D., and Yue, J.M., 2007, Agladupols A–E, triterpenoids from Aglaia duperreana, J. Nat. Prod., 70 (9), 1532–1535.

[30] Zhang, F., Wang, J.S., Gu, Y.C., and Kong, L.Y., 2010, Triterpenoids from Aglaia abbreviata and their cytotoxic activities, J. Nat. Prod., 73 (12), 2042–2046.

[31] Esimone, C.O., Eck, G., Nworu, C.S., Hoffmann, D., Überla, K., and Proksch, P., 2010, Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent anti-retroviral activity in vitro, Phytomedicine, 17 (7), 540–547.

[32] Awang, K., Loong, X.M., Leong, K.H., Supratman, U., Litaudon, M., Mukhtar, M.R., and Mohamad, K., 2012, Triterpenes and steroids from the leaves of Aglaia exima (Meliaceae), Fitoterapia, 83 (8), 1391–1395.

[33] Breitmaier, E., 2002, Structure Elucidation by NMR in Organic Chemistry: A Practical Guide, John Wiley and Sons, London, 1–249.

[34] Cysne, J.B., Braz-Filho, R., Assunção, M.V., Uchoa, D.E., Silveira, E.R., and Pessoa, O.D., 2006, 1H and 13C NMR spectral assignments of four dammarane triterpenoids from carnauba wax, Magn. Reson. Chem., 44 (6), 641–643.

[35] Phongmaykin, J., Kumamoto, T., Ishikawa, T., Suttisri, R., and Saifah, E., 2008, A new sesquiterpene and other terpenoid constituents of Chisocheton penduliflorus, Arch. Pharmacal Res., 31 (1), 21–27.



DOI: https://doi.org/10.22146/ijc.25052

Article Metrics

Abstract views : 3913 | views : 3394


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.