Formation of Ketoprofen-Malonic Acid Cocrystal by Solvent Evaporation Method

https://doi.org/10.22146/ijc.24884

Yudi Wicaksono(1*), Dwi Setyawan(2), Siswandono Siswandono(3),

(1) Faculty of Pharmacy, University of Jember Center for Development of Advanced Science and Technology, University of Jember
(2) Faculty of Pharmacy, Airlangga University
(3) Faculty of Pharmacy, Airlangga University
(*) Corresponding Author

Abstract


The purpose of this work was to explore the formation of ketoprofen-malonic acid cocrystal by solvent evaporation method. Early detection of cocrystal formation was conducted by hot stage microscopy and solid-liquid phase diagram. Cocrystal were prepared by solvent evaporation method by using isopropyl alcohol as solvent. Characterization of cocrystal was done by Powder X-Ray Diffractometry (PXRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). The results of hot stage microscopic and solid-liquid phase diagram indicated formation of ketoprofen-malonic acid cocrystal. PXRD and DSC measurements showed stoichiometric ratio of cocrystal ketoprofen-malonic acid (2:1). The ketoprofen-malonic acid cocrystal had melting point at 86.2 °C and unique peaks of PXRD pattern at 2θ of 6.1°, 17.8°, 23.2° and 28.6°. FTIR spectra indicated the formation of cocrystal due to interaction of C=O ketone group of ketoprofen with MA molecule. SEM images show that ketoprofen-malonic acid cocrystal have multi-shaped particles with rough surfaces.

Keywords


ketoprofen; cocrystal; hot stage microscopy; solid-liquid phase diagram

Full Text:

Full Text PDF


References

[1] Khaleel, N.Y., Abdulrasool, A.A., Ghareeb, M.M., and Hussain, S.A., 2011, Solubility and dissolution improvement of ketoprofen by solid dispersion in polymer and surfactant using solvent evaporation method, Int. J. Pharm. Pharm. Sci., 3 (4), 431–435.

[2] Vaghela, R., Kulkarni, P.K., Hani, U., Varma, V.N.S.K., and Abhay, R., 2014, Enhancing aqueous solubility of ketoprofen by fusion technique using suitable co-formers, Curr. Drug Ther., 9, 199–207.

[3] Rençber, S., Karavana, S.Y., and Özyazici, M., 2009, Bioavailability file: Ketoprofen, Fabad J. Pharm. Sci., 34, 203–216.

[4] Padrela, L., Rodrigues, M.A., Velaga, S.P., Matos, H.A., and de Azevedo, E.G., 2009, Formation of indomethacin–saccharin cocrystals using supercritical fluid technology, Eur. J. Pharm. Sci., 38 (1), 9–17.

[5] Mashhadi, S.M.A., Yunus, U., Bhatti, M.H., and Tahir, M.N., 2014, Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids, J. Mol. Struct., 1076, 446–452.

[6] Thakuria, R., Delori, A., Jones, W., Lipert, M.P., Roy, L., and Rodríguez-Hornedo, N., 2013, Pharmaceutical cocrystals and poorly soluble drugs, Int. J. Pharm., 453 (1), 101–125.

[7] Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., and Trappitt, G., 2011, Pharmaceutical cocrystals: An overview, Int. J. Pharm., 419 (1-2), 1–11.

[8] Maeno, Y., Fukami, T., Kawahata, M., Yamaguchi, K., Tagami, T., Ozeki, T., Suzuki, T., and Tomono, K., 2014, Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former, Int. J. Pharm., 473 (1-2), 179–186.

[9] Desale, P.K., 2013, A novel method: Co-crystallisation, Int. J. Pharm. Invent., 3 (1), 19–26.

[10] Setyawan, D., Sari, R., Yusuf, H., and Primaharinastiti, R., 2014, Preparation and characterization of artesunate-nicotinamide cocrystal by solvent evaporation and slurry method, Asian J. Pharm. Clin. Res., 7 (Suppl 1), 62–65.

[11] Klímová, K., and Leitner J., 2012, DSC study and phase diagrams calculation of binary systems of paracetamol, Thermochim. Acta, 550, 59–64.

[12] Berry, D.J., Seaton, C.C., Clegg, W., Harrington, R.W., Coles, S.J., Horton, P.N., Hursthouse, M.B., Storey, R., Jones, W., Friscic, T., and Blagden, N., 2008, Applying hot-stage microscopy to co-crystal screening: A study of nicotinamide with seven active pharmaceutical ingredients, Cryst. Growth Des., 8 (5), 1697–1712.

[13] Pal, S., Roopa, B.N., Abu, K., Manjunath, S.G., and Nambiar, S., 2014, Thermal studies of furosemide–caffeine binary system that forms a cocrystal, J. Therm. Anal. Calorim, 115 (3), 2261-2268.

[14] Manin, A.N., Voronin, A.P., Drozd, K.V., Manin, N.G., Bauer-Brandl, A., and Perlovich, G.L., 2014, Cocrystal screening of hydroxybenzamides with benzoic acid derivatives: A comparative study of thermal and solution-based methods, Eur. J. Pharm. Sci., 65, 56–64.

[15] Giron, D., 2007, Encyclopedia of Pharmaceutical Technology, Informa Healthcare USA, Inc., New York, 3726–3729.

[16] Tiţa, B., Fuliaş, A., Bandur, G., Marian, E., and Tiţa, D., 2011, Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms, J. Pharm. Biomed. Anal., 56 (2), 221–227.

[17] Limwikrant, W., Nagai, A., Hagiwara, Y., Higashi, K., Yamamoto, K., and Moribe, K., 2012, Formation mechanism of a new carbamazepine/malonic acid cocrystal polymorph, Int. J. Pharm., 431 (1-2), 237–240.

[18] Meltzer, V., and Pincu, E., 2012, Thermodynamic study of binary mixture of citric acid and tartaric acid, Cent. Eur. J. Chem., 10 (5), 1584–1589.

[19] Patel, J.R., Carlton, R.A., Needham, T.E., Chichester, C.O., and Vogt, F.G., 2012, Preparation, structural analysis, and properties of tenoxicam cocrystals, Int. J. Pharm., 436 (1-2), 685–706.

[20] Niazi, S.K., 2007, Handbook of Preformulation: Chemical, Biological, and Botanical Drugs, Informa Healthcare USA, Inc., New York, 69–75.

[21] Aakeröy, C.B., Fasulo, M.E., and Desper J., 2007, Cocrystal or salt:  Does it really matter?, Mol. Pharmaceutics, 4 (3), 317–322.

[22] Blasi, P., Schoubben, A., Giovagnoli, S., Perioli, L., Ricci, M., and Rossi, C., 2007, Ketoprofen poly(lactide-co-glycolide) physical interaction, AAPS PharmSciTech., 8 (2), E78–E85.

[23] Guo, C., Zhang, H., Wang, X., Xu, J., Liu, Y., Liu, X., Huang, H., and Sun, J., 2013, Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal, J. Mol. Struct., 1048, 267–273.

[24] Padrela, L., Rodrigues, M.A., Tiago, J., Velaga, S.P., Matos, H.A., and de Azevedo, E.G., 2014, Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique, J. Supercrit. Fluids, 86, 129–136.



DOI: https://doi.org/10.22146/ijc.24884

Article Metrics

Abstract views : 99 | views : 87

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Indexed by:


Creative Commons License
Indonesian Journal of Chemistry is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Statistics=

View The Statistics of Indones. J. Chem.