Water Molecular Adsorption on the Low-Index Pt Surface: A Density Functional Study

https://doi.org/10.22146/ijc.24162

Wahyu Tri Cahyanto(1*), Aris Haryadi(2), Sunardi Sunardi(3), Abdul Basit(4), Yulin Elina(5)

(1) Department of Physics, Universitas Jenderal Soedirman, Jl. Dr. Soeparno, Karangwangkal, Purwokerto 53123, Indonesia
(2) Department of Physics, Universitas Jenderal Soedirman, Jl. Dr. Soeparno, Karangwangkal, Purwokerto 53123, Indonesia
(3) Department of Physics, Universitas Jenderal Soedirman, Jl. Dr. Soeparno, Karangwangkal, Purwokerto 53123, Indonesia
(4) Department of Physics, Universitas Jenderal Soedirman, Jl. Dr. Soeparno, Karangwangkal, Purwokerto 53123, Indonesia
(5) Department of Physics, Universitas Jenderal Soedirman, Jl. Dr. Soeparno, Karangwangkal, Purwokerto 53123, Indonesia
(*) Corresponding Author

Abstract


We report the different way to explain the nature of water molecule (H2O) adsorption on the platinum (Pt) surfaces with low Miller index, i.e., (100), (110) and (111). Here, we perform periodic density functional theory (DFT) calculations to analyze the correlation between water-surface bonding strength and the observed charge transfer occurring in the systems. The results show that Pt-H2O interaction strength at the most stable adsorption sites, i.e., the atop site for each surfaces, follows the order of H2O/Pt(110) > H2O/Pt(100) > H2O/Pt(111). This order has the same pattern with the order of observed charge transfer contributed to the bonding formation. The differences in adsorption geometrical structures in these three surfaces are suggested to responsible for the order of bond strength since Coulomb interaction plays dominant roles in our electrostatic model. Furthermore, H2O-Pt interaction mechanism, which occurs through water 3a1 orbital releasing electron density (charge) followed by Pt-O bonding formation, is clarified.

Keywords


H2O adsorption; low Miller index; Pt surface; DFT; charge transfer

Full Text:

Full Text PDF


References

[1] Pirug, G., and Bonzel, H.P., 1999, "Electrochemical Double-Layer Modeling Under Ultrahigh Vacuum Condition" in Interfacial Electrochemistry: Theory, Experiment, and Applications, Wieckowski, A., Eds., Marcel Dekker Inc., New York, 269–286.

[2] Liu, P., 2013, "Synergistic Effect of Metal/Oxide Catalysts in the Water-Gas Shift Reactions: A Theory-Guided Rotational Design of Better Catalysts" in New and Future Developments in Catalysis: Hybrid Materials, Composites, and Organocatalysts, 1st ed., Suib, S.L., Eds., Elsevier Science Ltd, Elsevier Science & Technology, Oxford, 213–238.

[3] Talbott, D., 2002, Corrosion Science and Technology, Plenum Publishers, New York, 134.

[4] Bennett, B., Koraishy, B.M., and Meyers, J.P., 2012, Modeling and optimization of the DMFC system: Relating materials properties to system size and performance, J. Power Sources, 218, 268–279.

[5] Kumar, P., Dutta, K., Das, S., and Kundu, P.P., 2014, An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use, Int. J. Energy Res., 38 (11), 1367–1390.

[6] Cameron, D.S., Hards, G.A., Harrison, B., and Potter, R.J., 1987, Direct methanol fuel cells: Recent developments in the search for improved performance, Platinum Met. Rev., 31 (4), 173–181.

[7] Moura, A.S., Fajín, J.L.C., Mandado, M., and Cordeiro, M.N.D.S., 2017, Ruthenium-platinum catalysts and direct methanol fuel cells (DMFC): A review of theoretical and experimental breakthroughs, Catalysts, 7 (2), 47.

[8] Kakati, N., Maiti, J., Lee, S.H., Jee, S.H., Viswanathan, B., and Yoon, Y.S., 2014, Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru, Chem. Rev., 114 (24), 12397–12429.

[9] Chang, J., Feng, L., Jiang, K., Xue, H., Cai, W.B., Liu, C., and Xing, W., 2016, Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells, J. Matter. Chem. A, 4 (47), 18607–18613.

[10] Khan, I.A., Qian, Y., Badshah, A., Zhao, D., and Nadeem, M.A., 2016, Fabrication of highly stable and efficient PtCu alloy nanoparticles on highly porous carbon for direct methanol fuel cells, ACS Appl. Mater. Interfaces, 8 (32), 20793–20801.

[11] Ugalde-Reyes, O., Hernández-Maya, R., Ocampo-Flores, A. L., Alvarez-Ramírez, F., Sosa-Hernández, E., Angeles-Chavez, C., and Roquero, P., 2015, Study of the electrochemical activities of Mo-modified Pt catalysts, for application as anodes in direct methanol fuel cells: Effect of the aggregation route, J. Electrochem. Soc., 162 (3), 132–141.

[12] Kim, J., Jang, J.S., Peck, D.H., Lee, B., Yoon, S.H., and Jung, D.H., 2016, Methanol-tolerant platinum-palladium catalyst supported on nitrogen-doped carbon nanofiber for high concentration direct methanol fuel cells, Nanomaterials, 6 (8), 148.

[13] Neto, A.O., Franco, E.G., Aricó, E., Linardi, M., and Gonzalez, E.R., 2003, Electro-oxidation of methanol and ethanol on Pt–Ru/C and Pt–Ru–Mo/C electrocatalysts prepared by Bönnemann’s method, J. Eur. Ceram. Soc., 23 (15), 2987–2992.

[14] Gurau, B., Viswanathan, R., Liu, R., Lafrenz, T.J., Ley, K.L., Smotkin, E.S., Reddington, R., Sapienza, A., Chan, B.C., Mallouk, T.E., and Sarangapani, S., 1998, Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation, J. Phys. Chem. B, 102 (49), 9997–10003.

[15] Thiel, P.A., and Madey, T.E., 1987, The interaction of water with solid-surfaces: Fundamental aspects, Surf. Sci. Rep., 7 (6-8), 211–385.

[16] Henderson, M.A., 2002, The interaction of water with solid surfaces: fundamental aspects, Surf. Sci. Rep., 46, 5–308.

[17] Cahyanto, W.T., Widanarto, W., Shukri, G., and Kasai, H., 2016, Theoretical studies of the Adsorption of hydroxymethylidyne (COH) on Pt-alloy surfaces using density functional theory, Phys. Scr., 91 (2), 6.

[18] Cahyanto, W.T., 2014, Adsorption mechanism of carbon monoxide on PtRu and PtRuMo surfaces in the density functional theory perspective, Adv. Mater. Res., 896, 537–540.

[19] Cahyanto, W.T., Shukri, G., Agusta, M.K., and Kasai, H., 2013, Adsorption of formaldehyde and formyl intermediates on Pt, PtRu-, and PtRuMo-alloy surfaces: A density functional study, Appl. Surf. Sci., 266, 405–409.

[20] Cahyanto, W.T., Padama, A.A.B., Escaño, M.C.S., and Kasai, H., 2012, Preferential sites for adsorption of methanol and methoxy on Pt and Pt-alloy surfaces, Phys. Scr., 85 (1), 6.

[21] Anderson, A.B., 1981, Reactions and structures of water and oxygen covered Pt(111) and Fe(100), Surf. Sci., 105 (1), 159–176.

[22] Haq, S., Harnett, J., and Hodgson, A., 2002, Growth of thin crystalline ice films on Pt(111), Surf. Sci., 505, 171–182.

[23] Morgenstern, M., Michely, T., and Comsa, G., 1996, Anisotropy in the adsorption of H2O at low coordination sites on Pt(111), Phys. Rev. Lett., 77 (4), 703–706.

[24] Fajín, J.L.C., Cordeiro, M.N.D.S., ́and Gomes, J.R.B., 2014, Density functional theory study of the water dissociation on platinum surfaces: General trends, J. Phys. Chem. A, 118 (31), 5832–5840.

[25] Li, R., Wang, L., Yue, Q., Li, H., Xu, S., and Liu, J., 2014, Insights into the adsorption of oxygen and water on low-index Pt surfaces by molecular dynamics simulations, New J. Chem., 38 (2), 683–692.

[26] Árnadóttir, L., Stuve, E.M., and Jónsson, H., 2010, Adsorption of water monomer and clusters on platinum(111) terrace and related steps and kinks I. Configurations, energies, and hydrogen bonding, Surf. Sci., 604 (21-22), 1978–1986.

[27] Meng, S., Wang, E.G., and Gao, S., 2004, Water adsorption on metal surfaces: A general picture from density functional theory studies, Phys. Rev. B, 69 (19), 195404–195417.

[28] Branger, V., Pelosin, V., Badawi, K.F., and Goudeau, P., 1996, Study of the mechanical and microstructural state of platinum thin films, Thin Solid Films, 275 (1-2), 22–24.

[29] Hohenberg, P., and Kohn, W., 1964, Inhomogeneous electron gas, Phys. Rev., 136 (3B), 864–871.

[30] Kohn W., Sham L.J., 1965, Self-Consistent Equations Including Exchange and correlation Effects, Phys. Rev., 140 (4), 1133–1138.

[31] Kresse, G., and Hafner, J., 1993, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, 47 (1), 558–561.

[32] Kresse, G., and Hafner, J., 1994, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B, 49 (20), 14251–14269.

[33] Kresse, G., and Furthmüller, J., 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (16), 11169–11186.

[34] Kresse, G., and Furthmüller, J., 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6 (1), 15–50.

[35] Kresse, G., and Joubert, D., 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59 (3), 1758–1775.

[36] Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., 1992, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 46 (11), 6671–6687.

[37] Perdew, J.P., Burke, K., and Ernzerhof, M., 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (18), 3865–3868.

[38] Monkhorst, H.J., and Pack, J.D., 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 (12), 5188–5192.

[39] Methfessel, M., and Paxton, A.T., 1989, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40 (6), 3616–3621.

[40] Bengtsson, L., 1999, Dipole correction for surface supercell calculations, Phys. Rev. B, 59 (19), 12301–12304.

[41] Hasted, J.B., 1972, "Liquid Water: Dielectric Properties" in The Physics and Physical Chemistry of Water. Water (A Comprehensive Treatise), Franks, F., Eds., vol. 1, Springer, Boston, MA, 255–309.

[42] Grand, D., Bernas, A., and Amouyal, E., 1979, Photoionization of aqueous indole; Conduction band edge and energy gap in liquid water, Chem. Phys., 44 (1), 73–79.

[43] Goulet, T., Bernas, A., Ferradini, C., and Jay-Gerin, J.P., 1990, On the electronic structure of liquid water: Conduction-band tail revealed by photoionization data, Chem. Phys. Lett., 170 (5-6), 492–496.

[44] Ishikawa, Y., Liao, M.S., and Cabrera, C.R., 2000, Oxidation of methanol on platinum, ruthenium and mixed Pt-M metals (M=Ru, Sn): A theoretical study, Surf. Sci., 463 (1), 66–80.

[45] Bader, R.F.W., 1990, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York.

[46] Hodgson, A., and Haq, S., 2009, Water adsorption and the wetting of metal surfaces, Surf. Sci. Rep., 64 (9), 381–451.

[47] Lew, W., Crowe, M.C., Karp, E., and Campbell, C.T., 2011, Energy of molecularly adsorbed water on clean Pt(111) and Pt(111) with coadsorbed oxygen by calorimetry, J. Phys. Chem. C, 115 (18), 9164–9170.

[48] Sexton, B.A., and Hughes, A.E., 1984, A comparison of weak molecular adsorption of organic molecules on clean copper and platinum surfaces, Surf. Sci., 140 (1), 227–248.

[49] Morgenstern, M., Müller, J., Michely, T., and Comsa, G., 1997, The ice bilayer on Pt(111): Nucleation, structure and melting, Z. Phys. Chem., 198 (1-2), 43–72.

[50] Fisher, G.B., and Gland, J.L., 1980, The interaction of water with the Pt(111) surface, Surf. Sci., 94 (2-3), 446–455.



DOI: https://doi.org/10.22146/ijc.24162

Article Metrics

Abstract views : 873 | views : 730

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Indones. J. Chem. indexed by:


ISSN 1411-9420 (Print), ISSN 2460-1578 (online).

Web
Analytics View The Statistics of Indones. J. Chem.