Cinnamic Acid Derivatives as α-Glucosidase Inhibitor Agents

https://doi.org/10.22146/ijc.23572

Teni Ernawati(1*), Maksum Radji(2), Muhammad Hanafi(3), Abdul Mun’im(4), Arry Yanuar(5)

(1) Research Center for Chemistry – Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong Tangerang Selatan, Banten 15314
(2) Faculty of Pharmacy, Universitas Indonesia, Depok 16242
(3) Research Center for Chemistry – Indonesian Institute of Sciences (LIPI), Kawasan Puspiptek, Serpong Tangerang Selatan, Banten 15314
(4) Faculty of Pharmacy, Universitas Indonesia, Depok 16242
(5) Faculty of Pharmacy, Universitas Indonesia, Depok 16242
(*) Corresponding Author

Abstract


This paper reviews biological activity of some cinnamic acid derivative compounds which are isolated from natural materials and synthesized from the chemical compounds as an agent of α-glucosidase inhibitors for the antidiabetic drug. Aegeline, anhydroaegeline and aeglinoside B are natural products isolated compounds that have potential as an α-glucosidase inhibitor. Meanwhile, α-glucosidase inhibitor class of derivatives of cinnamic acid synthesized compounds are p-methoxy cinnamic acid and p-methoxyethyl cinnamate. Chemically, cinnamic acid has three main functional groups: first is the substitution of the phenyl group, second is the additive reaction into the α-β unsaturated, and third is the chemical reaction with carboxylic acid functional groups. The synthesis and modification of the structure of cinnamic acid are very influential in inhibitory activity against α-glucosidase.

Keywords


cinnamic acid derivative; α-glucosidase inhibitor; antidiabetic; synthesis; natural products

Full Text:

Full Text Pdf


References

[1] Nimura, Y., Tsujiyama, S., and Ueno, M., 2010, Bioconversion of cinnamic acid derivatives by schizophyllum commune, J. Gen. Appl. Microbiol., 56 (5), 381–387.

[2] Jitareanu, A., Tataringa, G., Zbancioc, A.M., Tuchilus, C., Balan, M., and Stanescu, U., 2013, Cinnamic acid derivatives and 4-aminoantipyrine amides – Synthesis and evaluation of biological properties, Res. J. Chem. Sci., 3 (3), 9–13.

[3] Jeon, J., Yang, D., and Jun, J., 2011, Selective synthesis of 3,4-dihydrocoumarins and chalcones from substituted aryl cinnamic esters, Bull. Korean Chem. Soc., 32 (1), 65–70.

[4] Godoy, M.E., Rotelli, A., Pelzer, L., and Tonn, C.E., 2000, Antiinflammatory activity of cinnamic acid esters, Molecules, 5 (3), 547–548.

[5] Erkan, N., Cetin, H., and Ayranci, E., 2011, Antioxidant activities of Sideritis congesta Davis et Huber-Morath and Sideritis arguta Boiss et Heldr: Identification of free flavonoids and cinnamic acid derivatives, Food Res. Int., 44 (1), 297–303.

[6] Bairwa, R., Kakwani, M., Tawari, N.R., Lalchandani, J., Ray, M.K., Rajan, M. G.R., and Degani, M.S., 2010, Novel molecular hybrids of cinnamic acids and guanylhydrazones as potential antitubercular agents, Bioorg. Med. Chem. Lett., 20 (5), 1623–1625.

[7] De, P., Veau, D., Bedos-belval F., Chassaing, S., and Baltas, M., 2005, “Cinnamic Derivatives in Tuberculosis”, in Understanding Tuberculosis - New Approaches to Fighting Against Drug Resistance, InTech., 337-362.

[8] Huang, Q.S., Zhu Y.J., Li, H.L., Zhuang, J.X., Zhang, C.L., Zhou, J.J., and Chen, Q.X., 2009, Inhibitory effects of methyl trans-cinnamate on mushroom tyrosinase and its antimicrobial activities, J. Agric. Food Chem., 57 (6), 2565–2569.

[9] Hartanti, L., and Setiawan, H.L., 2009, Inhibitory potential of some synthetic cinnamic acid derivatives towards tyrosinase enzyme, Indones. J. Chem., 9 (1),158–168.

[10] Adisakwattana, S., Chantarasinlapin, P., Thammarat, H., and Yibchok-anun S., 2009, A series of cinnamic acid derivatives and their inhibitory activity on intestinal α-glucosidase, J. Enzyme Inhib. Med. Chem., 24 (5), 1194–1200.

[11] De, P., Baltas, M., and Bedos-Belval F., 2011, Cinnamic acid derivatives as anticancer agents-a review, Curr. Med. Chem., 18 (11), 1672–1703.

[12] Adisakwattana, S., Sookkongwaree, K., Roengsumran, S., Petsom, A., Ngamrojnavanich, N., Chavsiri, W., and Yibchok-anun, S., 2004, Structure–activity relationships of trans-cinnamic acid derivatives on α-glucosidase inhibition, Bioorg. Med. Chem. Lett., 14 (11), 2893–2896.

[13] Letizia, C.S., Cocchiara, J., Lapczynski, A., Lalko, J., and Api, A.M., 2005, Fragrance material review on cinnamic acid, Food Chem. Toxicol., 43 (6), 925–943.

[14] Annapurna, H.V., Apoorva, B., Ravichandran, N., Arun, K.P., Brindha, P., Swaminathan, S., Vijayalaksmi, M., and Nagarajan, A., 2013, Isolation and in silico evaluation of antidiabetic molecules of Cynodon dactylon (L.), J. Mol. Graphics Modell., 39, 87–97.

[15] Abe, M., Nishikawa, K., Fukuda, H., Nakanishi, K., Tazawa, Y., Taniguchi, T., Park, S., Hiradate, S., Fujii, Y., Okuda, K., and Shindo, M., 2012, Key structural features of cis-cinnamic acid as an allelochemical, Phytochemistry, 84, 56–67.

[16] Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J.M., Rogers, A.E., Saurat, J.H., Sipes, .IG., and Tagami, H., 2007, A toxicologic and dermatologic assessment of related esters and alcohols of cinnamic acid and cinnamyl alcohol when used as fragrance ingredients, Food Chem. Toxicol., 45, S1–S23.

[17] De, P., Yoya, G.K., Constant, P., Bedos, B.F., Duran, H., Saffon, N., Daffe, M., and Baltas, M., 2011, Design, synthesis, and biological evaluation of new cinnamic derivatives as antituberculosis agents, J. Med. Chem., 54 (5), 1449–1461.

[18] Narender, T., Shweta, S., Tiwari, P., Reddy, K.P., Khaliq, T., Prathipati, P., and Raj, K., 2007, Antihyperglycemic and antidyslipidemic agent from Aegle marmelos, Bioorg. Med. Chem. Lett., 17 (6), 1808–1811.

[19] Phuwapraisirisan, P., Puksasook, T., Jong-aramruang, J., and Kokpol, U., 2008, Phenylethyl cinnamides: A new series of α-glucosidase inhibitors from the leaves of Aegle marmelos, Bioorg. Med. Chem. Lett., 18 (18), 4956–4958.

[20] Jong-Anurakkun, N., Bhandari, M.R., and Kawabata, J., α-Glucosidase inhibitors from Devil tree (Alstonia scholaris), 2007, Food Chem., 103 (4), 1319–1323.

[21] Lee, S.S., Lin, H.C., and Chen, C.K., 2008, Acylated flavonol monorhamnosides, α-glucosidase inhibitors, from Machilus philippinensis, Phytochemistry, 69 (12),
2347–2353.

[22] Babu, P.S., Prabuseenivasan, S., and Ignacimuthu, S., 2007, Cinnamaldehyde–A potential antidiabetic agent, Phytomedicine., 14 (1), 15–22.

[23] Abu-Mellal, A., Koolaji, N., Duke, R.K., Tran, V.H., and Duke, C.C., 2012, Prenylated cinnamate and stilbenes from Kangaroo Island propolis and their antioxidant activity, Phytochemistry, 77, 251–259.

[24] Du, Z., Liu, R., Shao, W., Mao, X., Ma, L., Gu, L., Huang, Z., and Chen, A.S.C., 2006, α-Glucosidase inhibition of natural curcuminoids and curcumin analogs, Eur. J. Med. Chem., 41 (2), 213–218.

[25] Gao, H., Huang, Y.N., Gao, B., Xu, P.Y., Inagaki, C., and Kawabata J., α-Glucosidase inhibitory effect by the flower buds of Tussilago farfara L., 2008, Food Chem., 106 (3), 1195–1201.

[26] Matsuura, H., Miyazaki, H., Asakawa, C., and Amano, M., 2004, Isolation of α-glusosidase inhibitors from hyssop (Hyssopus officinalis), Phytochemistry, 65 (1), 91–97.

[27] Hlila, M.B., Mosbah, H., Majouli, K., Msaada, K., Jannet, H.B., Aouni, M., and Selmi., B., 2015, α-Glucosidase inhibition by Tunisian Scabiosa arenaria Forssk. extracts, Int. J. Biol. Macromol., 77, 383–389.

[28] Song, Y.H., Kim, D.W., Curtis-Long, M.J., Park, C., Son, M., Kim, J.Y., Yuk, H.J, Lee, K.W., and Park, K.H., 2016, Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition, Eur. J. Med. Chem., 114, 201–208.

[29] Adisakwattana, S., Moonsan, P., and Yibchok-Anun, S., 2008, Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo, J. Agric. Food Chem., 56 (17), 7838–7844.

[30] Dwivedi, A.P., Kumar, S., Varshney, V., Singh, A.B., Srivastava, K., and Sahu, D.P., 2008, Synthesis and antihyperglycemic activity of novel N-acyl-2-arylethylamines and N-acyl-3-coumarylamines, Bioorg. Med. Chem. Lett., 18 (7), 2301–2305.

[31] Qin, N., Li, C.B., Jin, M.N., Shi, L.H., Duan, H.Q., and Niu W.Y., 2011, Synthesis and biological activity of novel tiliroside derivants, Eur. J. Med. Chem., 46 (10), 5189–5195.

[32] Nie, W., Luo, J.G., Wang, X.B., Yin, H., Sun, H.B., Yao, H.Q., and Kong, L.Y., 2011, Synthesis of new α-glucosidase inhibitors based on oleanolic acid incorporating cinnamic amides, Chem. Pharm. Bull., 59 (8), 1051–1056.

[33] American Diabetes Association, 2010, Diagnosis and Classification of Diabetes Mellitus, Diabetes Care, 33 (Suppl. 1), S62–S69.

[34] Matsumoto, K., Takemata, K., Takayama, K., Matsui, K.J.M., and Katayama, H., 2002, A novel method for the assay of alpha-glucosidase inhibitory activity using a multi-channel oxygen sensor, Anal. Sci., 18 (12), 1315–1319.

[35] Luna, B., and Feinglos, M.N., 2001, Oral agents in the management of type 2 diabetes mellitus, Am. Fam. Phisician, 63 (9), 1747–1756.

[36] Nashiru, O., Koh, S., Lee, S.Y., and Lee, D.S., 2001, Novel α-glucosidase from extreme thermophile Thermus caldophilus GK24, J. Biochem. Mol. Biol., 34, 347–354.

[37] Bösenberg, L.H., and Van Zyl, D.G., 2008, The mechanism of action of oral antidiabetic drugs: A review of recent literature, JEMDSA, 13 (3), 80–88.

[38] van de Laar, F.A., Lucassen, P.L., Akkermans, R.P., van de Lisdonk, E.H., Rutten, G.E., and van Weel, C., 2005, α-glucosidase inhibitors for patients with type 2 diabetes results from a Cochrane systematic review and meta-analysis, diabetes care, 28 (11), 154–163.

[39] Liu, Y., Zou, L., Ma, L., Chen, W.H., Wang, B., and Xu, Z.L., 2006, Synthesis and pharmacological activities of xanthone derivatives as α-glucosidase inhibitors, Bioorg. Med. Chem., 14 (16), 5683–5690.

[40] Kalra, S., 2014, Alpha glucosidase inhibitors, J. Pak. Med. Assoc., 64 (4), 474–476.



DOI: https://doi.org/10.22146/ijc.23572

Article Metrics

Abstract views : 6346 | views : 5228


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.