Photocatalytic Degradation of Diazinon Using Titanium Oxide Synthesized by Alkaline Solvent

Mohammad Rofik Usman(1), Atiek Rostika Noviyanti(2), Diana Rakhmawaty Eddy(3*)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang km. 21, Jatinangor, Sumedang, West Java 45363
(*) Corresponding Author


Photoactivity of titanium dioxide (TiO2) can be improved by turning it into nanoparticles. Synthesis of TiO2 nanoparticles can be done by using hydrothermal method. Hydrothermal method is influenced by types of precursor, hydrothermal conditions, including time, temperature, type and concentration of reactants. The purpose of this study is to obtain a hydrothermal condition which produces crystals of TiO2 nanoparticles with high quality. The material used was titanium tetrachloride (TiCl4) as initial precursors and for the type of reactants was used aqudestilate, aquabidestilate, ethanol, t-butanol, sodium hydroxide (NaOH) and potassium hydroxide (KOH). The resulting diffractogram showed the crystal structure of TiO2 nanoparticles with anatase and rutile. Based on calculations using the scherrer equation, TiO2 crystal obtained had a crystal size below 50 nm in both anatase and rutile. The percentage of rutile and anatase composition was obtained by using rietveld method with the help of rietica software. Morphology of TiO2 anatase showed particles with shape of cubic, while rutile was flower-shaped.


titanium dioxide nanoparticles; hydrothermal; scherrer equation; rietveld method

Full Text:

Full Text Pdf


[1] Carneiro, P.A., Osugi, M.E., Sene, J.J., Anderson, M.A., and Zanoni, M.V.B., 2004, Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin-film electrodes, Electrochim. Acta, 49 (22-23), 3807–3820.

[2] Prieto, O., Fermoso, J., Nuñez, Y., del Valle, J.L., and Irusta, R., 2005, Decolouration of textile dyes in wastewaters by photocatalysis with TiO2, Sol. Energy, 79 (4), 376–383.

[3] Pekakis, P.A., Xekoukoulotakis, N.P., and Mantzavinos, D., 2006, Treatment of textile dyehouse wastewater by TiO2 photocatalysis, Water Res., 40 (6), 1276–1286.

[4] Manurung, P., Situmeang, R., Ginting, E., and Pardede, I., 2015, Synthesis and characterization of titania-rice husk silica composites as photocatalyst, Indones. J. Chem., 15 (1), 36–42.

[5] Lhomme, L., Brosillon, S., and Wolbert, D., 2008, Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media, Chemosphere, 70 (3), 381–386.

[6] Affam, A.C., and Chaudhuri, M., 2013, Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis, J. Environ. Manage., 130, 160–165.

[7] Valencia, S., Marín, J.M., and Restrepo, G., 2010, Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment, TOMSJ, 4, 9–14.

[8] Massard, C., Boudeaux, D., Raspal, V., Feschet-Chassot, E., Sibaud, Y., Caudron, E., Devers, T., and Awitor, K.O., 2012, One-pot synthesis of TiO2 nanoparticles in suspensions for quantification of titanium debris release in biological liquids, ANP, 1, 86–94.

[9] Maryani, Y., and Kustiningsih, I., 2015, Determination and characterization of photocatalytic products of linear alkyl sulphonate by high performance liquid chromatography and nuclear magnetic resonance, Procedia Chem., 17, 216–223.

[10] Zuas, O., Kim, J.S., and Gunlazuardi, J., 2014, Influence of operational parameters on the photocatalytic activity of powdered TiO2 for the reduction of CO2, Indones. J. Chem., 14 (2), 122–130.

[11] Castro, A.L., Nunes, M.R., Carvalho, A.P., Costa, F.M., and Florêncio, M.H., 2008, Synthesis of anatase TiO2 nanoparticles with high temperature stability and photocatalytic activity, Solid State Sci., 10 (5), 602–606.

[12] Madhumitha, G., and Roopan, S.M., 2013, Devastated crops: Multifunctional efficacy for the production of nanoparticles, J. Nanomater., 2013, 1–12.

[13] Abbas, Z., Holmberg, J.P., Hellström, A.K., Hagström, M., Bergenholtz, J., Hassellöv, M., and Ahlberg, E., 2011, Synthesis, characterization and particle size distribution of TiO2 colloidal nanoparticles, Colloids Surf., A, 384 (1-3),

[14] Zhang, Y., Xiong, G., Yao, N., Yang, W., and Fu, X., 2001, Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method, Catal. Today, 68 (1-3), 89–95.

[15] Behnajady, M.A., Eskandarloo, H., Modirshahla, N., and Shokri, M., 2011, Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles, Desalination, 278 (1-3), 10–17.

[16] Kolen'ko, Y.V., Churagulov, B.R., Kunst, M., Mazerolles, L., and Colbeau-Justin, C., 2004, Photocatalytic properties of titania powders prepared by hydrothermal method, Appl. Catal., B, 54 (1), 51–58.

[17] Hanaor, D.A.H., and Sorrell, C.C., 2010, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46 (4), 855–874.

[18] Collazzo, G.C., Jahn, S.L., Carreño, N.L.V., and Foletto, E.L., 2011, Temperature and reaction time effects on the structural properties of titanium dioxide nanopowders obtained via the hydrothermal method, Braz. J. Chem. Eng., 28 (2), 265–272.

[19] Zhang, J., Xiao, X., and Nan, J., 2010, Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure, J. Hazard. Mater., 176 (1-3), 617–622.

[20] Lee, H.Y., and Kale, G.M., 2008, Hydrothermal synthesis and characterization of nano-TiO2, Int. J. Appl. Ceram. Technol., 5 (6), 657–665.

[21] Parra, R., Góes, M.S., Castro, M.S., Longo, E., Bueno, P.R., and Varela, J.A., 2008, Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid, Chem. Mater., 20 (1), 143–150.

[22] Seok, S.I., Vithal, M., and Chang, J.A., 2010, Colloidal TiO2 nanocrystals prepared from peroxotitanium complex solutions: Phase evolution from different precursors, J. Colloid Interface Sci., 346 (1), 66–71.

[23] Yin, H., Wada, Y., Kitamura, T., Sumida, T., Hasegawa, Y., and Yanagida, S., 2002, Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions, J. Mater. Chem., 12 (2), 378–383.

[24] Oh, J.K., Lee, J.K., Kim, S.J., and Park, K.W., 2009, Synthesis of phase and shape-controlled TiO2 nanoparticles via hydrothermal process, J. Ind. Eng. Chem., 15 (2), 270–274.

[25] Wang, Y., Zhang, L., Deng, K., Chen, X., and Zou, Z., 2007, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures, J. Phys. Chem. C, 111 (6), 2709–2714.

[26] WHO, 2010, The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009, International Programme on Chemical Safety, Stuttgart.

[27] Ditjen PSP, 2012, Pestisida Terdaftar dan Diizinkan, Bagian Evaluasi dan Pelaporan, Jakarta.

[28] Hunter, B.A., 1997, Rietica for Windows, ver.1.7.7.

[29] Rahayu, W.S., Hartanti, D., and Handoyo, 2016, Analisis residu pestisida organofosfat pada simplisia temulawak (Curcuma xanthorrhiza Roxb.) dengan metode spektrofotometri visibel, Pharmacy, 6 (3), 1–10.

[30] Hayle, S.T., and Gonfa, G.G., 2014, Synthesis and characterization of titanium oxide nanomaterials using sol-gel method, Am. J. Nanosci. Nanotechnol., 2 (1), 1–7.

[31] Wang, X.Y., Liu, Z., Liao, H., Klein, D., and Coddet, C., 2005, Deoxidisation and phase analysis of plasma sprayed TiO2 by X-ray Rietveld method, Thin Solid Films, 473 (2), 177–184.

[32] Inorganic Crystal Structure Database (ICSD), 172916, 2008, United States.

[33] Inorganic Crystal Structure Database (ICSD), 109469, 2007, United States.

[34] Bakardjieva, S., Šubrt, J., Štengl, V., Dianez, M.J., and Sayagues, M.J., 2005, Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Appl. Catal., B, 58 (3-4), 193–202.

[35] Zhang, H., and Banfield, J.F., 1999, New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles, Am. Mineral., 84, 528–535.

[36] Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., and Biswas, P., 2011, Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties, Nanoscale Res. Lett., 6 (27), 1–8.

[37] Ou, H.H., and Lo, S.L., 2007, Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Sep. Purif. Technol., 58 (1), 179–191.

[38] Sikhwivhilu, L.M., Ray, S.S., and Coville, N.J., 2008, Influence of bases on hydrothermal synthesis of titanate nanostructures, Appl. Phys. A, 94 (4), 963–973.

[39] Mao, X., Song, X., Lu, G., Sun, Y., Xu, Y., and Yu, J., 2014, Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions, Ind. Eng. Chem. Res.,
53 (45), 17625–17635.

[40] Song, S.Y., and Ok, K.M., 2015, Modulation of framework and centricity: cation size effect in new quaternary selenites, ASc(SeO3)2 (A = NA, K, Rb, and Cs), Inorg. Chem., 54 (10), 5032–5038.

[41] Landmann, M., Rauls, E., and Schmidt, W.G., 2012, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys. Condens. Matter., 24 (19), 1–6.


Article Metrics

Abstract views : 1152 | views : 1420

Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.