Characterization and Photocatalytic Activity of TiO2(rod)-SiO2-Polyaniline Nanocomposite

https://doi.org/10.22146/ijc.22550

Sri Wahyuni(1), Eko Sri Kunarti(2), Respati Tri Swasono(3), Indriana Kartini(4*)

(1) Department of Chemistry, Universitas Negeri Semarang, Jl. Raya Sekaran-Gunungpati, Semarang
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(*) Corresponding Author

Abstract


A study of TiO2(rod)-SiO2 composites coated with polyaniline (PANI) has been performed. PANI was synthesized through in-situ polymerization of aniline at various concentration (0.0137, 0.0274, and 0.0411 M) on the composite under acidic condition. PANI was confirmed by the appearance of C=N, C=C vibrations and the redshift of the band-gap from 3.14 eV for the TiO2(rod)-SiO2 into 3.0 eV for the TSP01 composite. It is also shown that the polymerization does not change the crystal structure of TiO2(rod)-SiO2 as confirmed by the XRD pattern. The TEM image shows a mixed structure of SiO2 coated by TiO2(rod)-PANI layers and the oxides coated by PANI layers. Therefore, the surface area of the resulted TiO2(rod) and the composites did not change significantly. The T TiO2(rod)-SiO2-PANI composite give small improvement under visible irradiation from 20.25 to 25.59% (around 5% from the bulk of TiO2(rod)) and from 25.03 to 25.59% (around 2% from TiO2(rod)-SiO2 composite). The mixed structure of the composites, as well as the formation of excessive layers of PANI, are possibly the case for the low photoactivity. Further improvement to obtain a core-shell structure with a thin layer of PANI is still sought.

Keywords


TiO2(rod)-SiO2; composite; PANI; photocatalytic

Full Text:

Full Text PDF


References

[1] Wang, D.P., and Zeng, H.C., 2009, Multifunctional roles of TiO2 nanoparticles for architecture of complex core-shells and hollow spheres of SiO2-TiO2-polyaniline system, Chem. Mater., 21 (20), 4811–4823.

[2] Xiong, S., Phua, S.L., Dunn, B.S., Ma, J., and Lu, X., 2010, Covalently bonded polyaniline-TiO2 hybrids: A facile approach to highly stable anodic electrochromic materials with low oxidation potentials, Chem. Mater., 22 (1), 255–260.

[3] Watoni, A.H., Gandasasmita, S., and Noviandri, I., 2007, Electrochemical synthesis and characterization of polypyrrole for electrochemical synthezis dodecylsulfate sensor membrane, Indones. J. Chem., 7 (3), 249–253.

[4] Li, X., Wang, D., Cheng, G., Luo, Q., An, J., and Wang, Y., 2008, Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination, Appl. Catal., B, 81 (3-4), 267–273.

[5] Olad, A., Behboudi, S., and Entezami, A.A., 2012, Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite, Bull. Mater. Sci., 35 (5), 801–809.

[6] Li, J., Zhu, L., Wu, Y., Harima, Y., Zhang, A., and Tang, H., 2006, Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization, Polymer, 47, 7361–7367.

[7] Wang, L.Y., Sun, Y.P., and Xu, B.S., 2008, Comparison study on the size and phase control of nanocrystalline TiO2 in three Ti–Si oxide structures, J. Mater. Sci., 43 (6), 1979–1986.

[8] Sirimahachai, U., Ndiege, N., Chandrasekharan, R., Wongnawa, S., and Shannon, M.A., 2010, Nanosized TiO2 particles decorated on SiO2 spheres (TiO2/SiO2): Synthesis and photocatalytic activities, J. Sol-Gel Sci. Technol., 56 (1), 53–60.

[9] Iengo, P., Di Serio, M., Sorrentino, A., Solinas, V., and Santacesaria, E., 1998, Preparation and properties of new acid catalysts obtained by grafting alkoxides and derivatives on the most common supports note I — grafting aluminium and zirconium alkoxides and related sulphates on silica, Appl. Catal., A, 167 (1), 85–101.

[10] Gao, X., and Wachs, I.E., 1999, Titania–silica as catalysts: Molecular structural characteristics and physico-chemical properties, Catal. Today, 51 (2), 233–254.

[11] Zhang, M., Shi, L., Yuan, S., Zhao, Y., and Fang, J., 2009, Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol, J. Colloid Interface Sci., 330 (1), 113–118.

[12] Smitha, V.S., Manjumol, K.A., Baiju, K.V., Ghosh, S., Perumal, P., and Warrier, K.G.K., 2010, Sol-gel route to synthesize titania-silica nano precursors for photoactive particulates and coatings, J. Sol-Gel Sci. Technol., 54 (2), 203–211.

[13] Wilhelm, P., and Stephan, D., 2006, On-line tracking of the coating of nanoscaled silica with titania nanoparticles via zeta-potential measurements, J. Colloid Interface Sci., 293 (1), 88–92.

[14] Suprabha, T., Roy, H.G., Thomas, J., Kumar, K.P., and Mathew, S., 2008, Microwave-assisted synthesis of titania nanocubes, nanospheres and nanorods for photocatalytic dye degradation, Nanoscale Res. Lett., 4 (2), 144–152.

[15] Zhang, H., Liu, P., Liu, X., Zhang, S., Yao, X., An, T., Amal, R., and Zhao, H., 2010, Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications, Langmuir, 26 (13), 11226–11232.

[16] Kumar, A., Madaria, A.R., and Zhou, C., 2010, Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells, J. Phys. Chem. C, 114 (17), 7787–7792.

[17] Yun, H.J., Lee, H., Joo, J.B., Kim, W., and Yi, J., 2009, Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid, J. Phys. Chem. C, 113 (8), 3050–3055.

[18] Wahyuni, S., Kunarti, E.S., Swasono, R.T., and Kartini, I., 2017, Study on the properties and photoactivity of TiO2(nanorod)-SiO2 synthesized by sonication technique, Orient. J. Chem., 33 (1), 249–257.

[19] Song, L., Qiu, R., Mo, Y., Zhang, D., Wei, H., and Xiong, Y., 2007, Photodegradation of phenol in a polymer-modified TiO2 semiconductor particulate system under the irradiation of visible light, Catal. Commun., 8 (3), 429–433.

[20] Zhu, Y., Xu, S., and Yi, D., 2010, Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites, React. Funct. Polym., 70 (5), 282–287.

[21] Zhang, L., Liu, P., and Su, Z., 2006, Preparation of PANI-TiO2 nanocomposites and their solid-phase photocatalytic degradation, Polym. Degrad. Stab., 91 (9), 2213–2219.

[22] Irmak, S., Kusvuran, E., and Erbatur, O., 2004, Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide, Appl. Catal., B, 54 (2), 85–91.

[23] Sato, T., Masaki, K., Sato, K., Fujishiro, Y., and Okuwaki, A., 1996, Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer, J. Chem. Technol. Biotechnol., 67 (4), 339–344.

[24] Hsien, Y., Chang, C., Chen, Y., and Cheng, S., 2001, Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves, Appl. Catal., B, 31 (4), 241–249.

[25] Brunauer, S., Emmett, P.H., and Teller, E., 1938, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (2), 309–319.

[26] Carja, G., Nakamura, R., Aida, T., and Niiyama, H., 2001, Textural properties of layered double hydroxides: Effect of magnesium substitution by copper or iron, Microporous Mesoporous Mater., 47(2-3), 275–284.

[27] Salem, M.A., Al-Ghonemiy, A.F., and Zaki, A.B., 2009, Photocatalytic degradation of Allura red and Quinoline yellow with polyaniline/TiO2 nanocomposite, Appl. Catal., B, 91 (1-2), 59–66.

[28] Wang, T.T., Liu, X.H., Guo, J.J., Cheng, Y.C., Xu, G.J., and Cui, P., 2013, Synthesis and electrorheological properties of SiO2/polyaniline nanocomposites prepared by in-situ polymerization, Adv. Mater. Res., 669, 131–137.

[29] Zengin, H., and Erkan, B., 2010, Synthesis and characterization of polyaniline/silicon dioxide composites and preparation of conductive films, Polym. Adv. Technol., 21 (3), 216–223.

[30] Huang, X., Wang, G., Yang, M., Guo, W., and Gao, H., 2011, Synthesis of polyaniline-modified Fe3O4/SiO2/TiO2 composite microspheres and their photocatalytic application, Mater. Lett., 65 (19-20), 2887–2890.

[31] Liu, Z., Miao, Y.E., Liu, M., Ding, Q., Tjiu, W.W., Cui, X., and Liu, T., 2014, Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance, J. Colloid Interface Sci., 424, 49–55.

[32] Li, X., Wang, D., Luo, Q., An, J., Wang, Y., and Cheng, G., 2008, Surface modification of titanium dioxide nanoparticles by polyaniline via an in situ method, J. Chem. Technol. Biotechnol., 83 (11), 1558–1564.

[33] Zhang, H., Zong, R., Zhao, J., and Zhu, Y., 2008, Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI, Environ. Sci. Technol., 42 (10), 3803–3807.

[34] Li, X., Teng, W., Zhao, Q., and Wang, L., 2011, Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays, J. Nanopart. Res., 13 (12), 6813–6820.

[35] Wang, F., Min, S., Han, Y., and Feng, L., 2010, Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts, Superlattices Microstruc., 48 (2), 170–180.



DOI: https://doi.org/10.22146/ijc.22550

Article Metrics

Abstract views : 3274 | views : 2868


Copyright (c) 2018 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.