A New Polyketide from the Endophytic Fungus Penicillium chermesinum

https://doi.org/10.22146/ijc.22273

Cici Darsih(1*), Vilailak Prachyawarakorn(2), Chulabhorn Mahidol(3), Somsak Ruchirawat(4), Prasat Kittakoop(5)

(1) Research Unit for Natural Products Technology, Indonesian Institute of Sciences, Gading, Playen, Gunungkidul, Yogyakarta 55581, Indonesia
(2) Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
(3) Chulabhorn Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
(4) Chulabhorn Graduate Institute, Chemical Biology Program, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
(5) Chulabhorn Graduate Institute, Chemical Biology Program, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
(*) Corresponding Author

Abstract


A new polyketide derivative, 2-chloro-3,4,7-trihydroxy-9-methoxy-1-methyl-6H-benzo[c]chromen-6-one (1), was isolated from the endophytic fungus Penicillium chermesinum. The structure was established on the basis of UV, IR, HR-ESI MS, and 1D and 2D NMR experiments. The cytotoxicity against four cancer cell lines (HuCCA-1, HepG2, A-549, and MOLT-3) of compound 1 are 14.94-115.71 µM.

Keywords


Penicillium chermesinum; natural products; polyketide; endophytic fungi; cytotoxicity

Full Text:

Full Text PDF


References

[1] Wang, Z., Ma, Z., Wang, L., Tang, C., Hu, Z., Chou, G., and Li, W., 2015, Active anti-acetylcholinesterase component of secondary metabolites produced by the endophytic fungi of Huperzia serrata, Electron. J. Biotechnol., 18 (6), 399–405.

[2] Kusari, S., Pandey, S.P., and Spiteller, M., 2013, Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites, Phytochemistry, 91, 81–87.

[3] Jia, M., Chen, L., Xin, H.L., Zheng, C.J., Rohman, K., Han, T., and Qin, L.P., 2016, A friendly relationship between endophytic fungi and medicinal plants: A systematic review, Front. Microbiol., 7, 906.

[4] Elavarasi, A., Rathna, G.S., and Kalaiselvam, M., 2012, Taxol producing mangrove endophytic fungi Fusarium oxysporum from Rhizophora annamalayana, Asian Pac. J. Trop. Biomed., 2 (2), S1081–S1085.

[5] Zhang, G., Sun, S., Zhu, T., Lin, Z., Gu, J., Li, D., and Gu, Q., 2011, Antiviral isoindolone derivates from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum, Phytochemistry, 72 (11-12), 1436–1442.

[6] Wibowo, M., Prachyawarakorn, V., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., and Kittakoop, P., 2014, Tricyclic and spirobicyclic norsesquiterpenes from the endophytic fungus Pseudolagarobasidium acaciicola, Eur. J. Org. Chem., 19, 3976–3980.

[7] Li, H., Huang, H., Shao, C., Huang, H., Jiang, J., Zhu, X., Liu, Y., Liu, L., Lu, Y., Li, M., Lin, Y., and She, Z., 2011, Cytotoxic norsesquiterpene peroxide from the endophytic fungus Talaromyces flavus isolated from the mangrove plant Sonneratia apetala, J. Nat. Prod., 74 (5), 1230–1235.

[8] Wu, Y.Z., Qiao, F., Xu, G.W., Zhao, J., Teng, J.F., Li, C., and Deng, W.J., 2015, Neuroprotective metabolites from the endophytic fungus Penicillium citrinum of the mangrove Bruguiera gymnorrhiza, Phytochem. Lett., 12, 148–152.

[9] Khiralla, A., Mohamed, I., Thomas, J., Mignard, B., Spina, R., Yagi, S., and Laurain-Mattar, D., 2015, A pilot study of antioxidant potential of endophytic fungi from the some Sudanese medicinal plants, Asian Pac. J. Trop. Biomed., 8 (9), 701–704.

[10] Hussain, H., Kliche-Spory, C., Al-Harrasi, A., Al-Rawahi, A., Abbas, G., Green, I.R., Schulz, B., and Shah, A., 2014, Antimicrobial constituents from three endophytic fungi, Asian Pac. J. Trop. Biomed., 7 (Suppl. 1), S224–S227.

[11] Yadav, M., Yadav, A., and Yadav, J.P., 2014, In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam., Asian Pac. J. Trop. Biomed., 7 (Suppl. 1), S256–S261.

[12] Kobayashi, J., and Kubota, T., 2007, Bioactive macrolides and polyketides from marine dinoflagellates of the genus Amphidinium, J Nat Prod, 70 (3), 451–460.

[13] Santiago, C., Sun, L., Munro, M.H.G., and Santhanam, J., 2014, Polyketide benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: Biological activity and structure, Asian Pac. J. Trop. Biomed., 4 (8), 627–632.

[14] Hammerschmidt, L., Debbab, A., Ngoc, T.D., Wray, V., Hemphil, C.P., Lin, W.H., Broetz-Oesterhelt, H., Kassack, M.U., Proksch, P., and Aly, A.H., 2014, Polyketides from the mangrove-derived endophytic fungus Acremonium strictum, Tetrahedron Lett., 55 (24), 3463–3468

[15] Xu, J., Aly, A.H., Wray, V., and Proksch, P., 2011, Polyketide derivatives of endophytic fungus Pestalotiopsis sp. isolated the Chinese mangrove plant Rhizophora mucronata, Tetrahedron Lett., 52 (1) 21–25.

[16] Lai, D., Brőtz-Oesterhelt, H., Műller W.E.G., Wray, V., and Proksch, P., 2013, Bioactive polyketides and alkaloids from Penicillium citrinum, a fungal endophyte isolated from Ocimum tenuiflorum, Fitoterapia, 91, 100–106.

[17] Liu, Y., Yang, Q., Xia, G., Huang, H., Li, H., Ma, L., Lu, Y., He, L., Xia, X., and She, Z., 2015, Polyketides with α-glucosidase inhibitory activity from a mangrove endophytic fungus, Penicillium sp. HN29-3B1, J. Nat. Prod., 78 (8), 1816–1822.

[18] Jouda, J.B., Mawabo, I.K., Notedji, A., Mbazoa, C.D., Nkenfou, J., Wandji, J., and Nkenfou, C.N., 2016, Anti-mycobacterial activity of polyketides from Penicillium sp. endophyte isolated from Garcinia nobilis against Mycobacteriumsmegmatis, Int. J. Mycobacteriol., 5 (2), 192–196.

[19] Saleem, M., Tousif, M.I., Riaz, N., Ahmed, I., Schulz, B., Ashraf, M., Nasar, R., Pescitelli, G., Hussain, H., Jabbar, A., Shafiq, N., and Krohn, K., 2013, Cryptosporioptide: A bioactive polyketide produced by an endophytic fungus Cryptosporiopsis sp., Phytochemistry, 93, 199–202.

[20] Darsih, C., Prachyawarakorn, V., Wiyakrutta, S., Mahidol, C., Ruchirawat, S., and Kittakoop, P., 2015, Cytotoxic metabolites from the endophytic fungus Penicillium chermesinum: Discovery of a cysteine-targeted Michael acceptor as a pharmacophore for fragment-based drug discovery, bioconjugation and click reactions, RSC Adv., 5 (86), 70595–70603.

[21] Sakurai, M., Nishio, M., Yamammoto, K., Okuda, T., Kawano, K., and Ohnuki, T., 2003, TMC-264, a novel antiallergic heptaketide produced by the fungus Phoma sp. TC 1674, Org. Lett., 5 (7), 1083–1085.

[22] Doyle, A., and Griffiths, J.B. (Eds.), 1997, Mammalian Cell Culture: Essential Techniques; John Wiley and Sons: New York, NY, USA.

[23] Carmichael, J., DeGraff, W.G., Gazdar, A.F., Minna, J.D., and Mitchell, J.B., 1987, Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing, Cancer Res., 47, 936–942.



DOI: https://doi.org/10.22146/ijc.22273

Article Metrics

Abstract views : 4546 | views : 4093


Copyright (c) 2017 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.