Harno Dwi Pranowo(1*), Foliatini Foliatini(2), Karna Wijaya(3)

(1) Austrian-Indonesian Centre for Computational Chemistry Gadjah Mada University, Yogyakarta
(2) Austrian-Indonesian Centre for Computational Chemistry Gadjah Mada University, Yogyakarta
(3) Austrian-Indonesian Centre for Computational Chemistry Gadjah Mada University, Yogyakarta
(*) Corresponding Author


Research on comparison between Hartree-Fock method and electron correlation methods as well as the effect of size of basis sets on representing interaction of Co2+-NH3 observed from complex energy parameters and optimum geometric parameters have been carried out.The first step is screening basis sets based on charge transfer effect and BSSE value. The selected basis set does not yield charge transfer at 1,4 Å <  < 8 Å, and yield small BSSE value. Electron correlation methods used are Møller-Plesset order 2 (MP2), Møller-Plesset order 3 (MP3), Configuration Interaction, Doubles (CID), dan Configuration Interaction, Singles and Doubles (CISD) whereas the basis set used is the result of the screening. LANL2DZ ECP-6-31G* and LANL2DZ ECP-6-311++G(3df,3pd)  basis sets are used with Unrestricted Hartree-Fock (UHF) and Møller-Plesset order 2 (MP2) methods to study the effect of size of basis sets.The result of the research showed that the best basis set is LANL2DZ ECP for Co2+ and 6-31G* for NH3. The application of electron correlation method and large basis set can increase the quality of interaction representation of Co2+- NH3. Møller-Plesset (MP) perturbation method gives larger contribution to correlation energy than Configuration Interaction (CI) method.


solvation modelling; ammonia; cobalt

Full Text:

Full Text Pdf


[1]   Ohtaki, H., Radnai, T., 1993, Chem. Rev., 93, 1165.

[2]   Allen M. P., Tildesley D. J., 1987, Computer Simulation of Liquids, Oxford University Press, Oxford, UK.

[3]   Nielson G. W., 1991, Z Naturforsch, 46 a, 100.

[4]   Foresman, J.B., Frisch, A., 1996, Exploring Chemistry with Electronics Structure Methods, 2nd edition, Gaussian, Inc., Pittsburg, PA., 97.

[5]   Curtiss L. A., Halley J. W., Hautmann J., Rahman A., 1990, J. Chem. Phys., 86, 2319

[6]   Jensen, F., 1999, Introduction to Computational Chemistry, John Wiley & Sons, Inc., New York, 265-267.

[7]   Cundari, T.R., Benson, M.T., Lutz, M.L., Sommerer, S.O., 1996, Effective Core Potential Approaches to the Chemistry of the Heavier Elements, in Reviews in Computational Chemistry, Boyd, D.B., Lipkowitz, K.B., Volume 8, VCH Publishers Inc., New York, 151.

[8]   Bueker, H.H., Uggerud, E., 1995, J. Phys. Chem., 99, 5945-5949.

[9]   Hay, P.J. dan Wadt, W.R., 1985, J. Chem. Phys., 82, 270.

[10] Frisch, M. J., Trucks, G. W., Schlegel., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheesman, J. R., Keith, T. A., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nayakkara, a., Challacombe, M., Peng, C. y., Ayala, P. L., Chen, W., Wong, M. W., Andres, J. L., Reploge, E. S., Gomperts, R., Martin, R. L., Fox, D. L., Binkley, J. S., defrees, D. J., Baker, J., Stewart, J. J. P., Head-Gordon, M., Gonzales, C. and Pople, J. a., 1995, GAUSSIAN 98, Gaussian Inc., Piittsburgh

[11] Hehre, W.J., Radom, L., Schleyer, P.v.R., Pople, J.A., 1986, Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc., New York, 33.


Article Metrics

Abstract views : 408 | views : 466

Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.