THE PREFERENTIAL STRUCTURE OF Co2+ SOLVATION IN AQUEOUS AMMONIA SOLUTION DETERMINING BY MONTE CARLO SIMULATION

https://doi.org/10.22146/ijc.21710

Cahyorini Kusumawardani(1*), Sukisman Purtadi(2), Crys Fajar Partana(3), Harno Dwi Pranowo(4), Mudasir Mudasir(5)

(1) Chemistry Education Department, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Karangmalang, Depok, Yogyakarta 55283, Indonesia
(2) Chemistry Education Department, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Karangmalang, Depok, Yogyakarta 55283, Indonesia
(3) Chemistry Education Department, Faculty of Mathematics and Natural Sciences, State University of Yogyakarta, Karangmalang, Depok, Yogyakarta 55283, Indonesia
(4) Austrian–Indonesian Center for Computational Chemistry (AIC), Gadjah Mada University, Yogyakata
(5) Austrian–Indonesian Center for Computational Chemistry (AIC), Gadjah Mada University, Yogyakata
(*) Corresponding Author

Abstract


A Monte Carlo simulation was performed for Co2+ in 18.6 % aqueous ammonia solution at a temperature of 293.16 K, using ab initio pair potentials and three-body potentials for Co-H2O-H2O, Co-NH3-NH3 and Co-H2O-NH3 interactions. The first solvation shell consists average of 2.9 water and 3.2 ammonia molecules, and the second shell of 10.4 water and 11.2 ammonia molecules. The structure of the solvated ion is discussed in terms of radial distribution functions, angular distributions and coordination number.

 

Keywords: Molecular simulation, Monte Carlo simulation, solvation, ab initio


Full Text:

Full Text PDF



DOI: https://doi.org/10.22146/ijc.21710

Article Metrics

Abstract views : 204 | views : 266


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.