CONFORMATIONAL EQUILIBRIUM AND SPECTROSCOPIC PROPERTIES OF CALIX[4]ARENE: THEORETICAL STUDY USING AB INITIO METHOD
Hanggara Sudrajat(1*), Ria Armunanto(2)
(1) Austrian-Indonesian Center for Computational Chemistry (AIC), Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta 55281
(2) Austrian-Indonesian Center for Computational Chemistry (AIC), Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta 55281
(*) Corresponding Author
Abstract
Molecular structures were optimized for the calix[4]arene by ab initio method at the Hartree-Fock level of theory using LANL2DZ and 6-311G basis sets. Conformational equilibrium of four calix[4]arene conformers are reported. The results are compared with experiment, force field, and semiempirical molecular orbital calculations. General trends in relative stabilities of calix[4]arene decrease in following order: cone > partial-cone > 1,2-alternate > 1,3-alternate. The most stable conformer is the cone conformer that is stabilized by an array of four hydrogen bonds and these results agree with the reported experimental observations. All structures were analyzed using theoretical IR, UV-Vis, and 1H NMR spectra attributed to the conformational equilibrium at the Hartree-Fock level of theory using LANL2DZ basis set.
Keywords
Full Text:
Full Text PdfReferences
[1] Lehn, J.M., 1995, Supramolecular Chemistry; VHC: Weinheim, Germany, 243-247.
[2] Cox, B.G., and Schneider, H., 1992, Coordination and Transport Properties of Macrocyclic Compounds in Solution; Elsevier: Amsterdam, 307-310.
[3] Bohmer, V., 1995, Angew. Chem., Int. Ed. Engl. 34, 713.
[4] Neri, P., Geraci, C., and Piatelli, M, 1995, J. Org. Chem, 60, 4126
[5] van Dienst, E., Iwema, B.W.I., Engbersen, J.F.J., Verboom, W., and Reinhoudt, D.N., 1993, Pure Appl. Chem., 65, 387.
[6] Gutsche, C. D., 1989, Calixarenes; Royal Society of Chemistry: Cambridge, 143-145.
[7] Ikeda, S., and Shinkai, A., 1997, Chem. Rev., 97, 1713-1734.
[8] Alemán, C., den Otter, W.K., Tolpekina, T.V., and Briels, W.J., 2003, J. Org. Chem., 69, 951-958.
[9] Arnaud-Neu, F., Collins, E.M., Deasy, M., Ferguson, G., Harris, S.J., Kaitner, B., Lough, A.J., McKervey, M.A., and Marques, E., 1989, J. Am. Chem. Soc., 111, 23, 8681-8691.
[10] Chawla, H.M., and Singh, P., 2007, Tetrahedron, 64, 4, 741-748.
[11] de Namor, A.F.D., Cleverley, R.M., and Zapata-Ormachea, M.L., 1998, Chem. Rev., 98, 2495-2525.
[12] Grootenhuis, P.D.J., Kollman, P.A., Groenen, L.C., Reinhoudt, D.N., van Hummel, G.J., Ugozzoli, F., and Andreetti, G.D., 1990., J. Am. Chem. Soc., 12, 4165-4176.
[13] Harada, T., Rudziński, J.M., and Shinkai, S., 1992, J. Chem. Soc. Perkin Trans., 2, 2109-2115.
[14] Harada, T., and Shinkai, S., 1995, J. Chem. Soc. Perkin Trans., 2, 2231-2242.
[15] Fischer, S., Grootenhuis, P.D.J., Groenen, L.C., van Hoorn, W.P., van Veggel, F.C.J.M., Reinhoudt, D.N., and Karplus, M., 1995, J. Am. Chem. Soc., 117, 1611-1620.
[16] Lipkowitz, K.B., and Pearl, G., 1993, J. Org. Chem., 58, 6729-6736.
[17] Broyere,E., Persoons, A., and Bredas, J.L., 1997, J.Phys.Chem.,101,4142
[18] HyperChem Release 7.5; Hypercube, Inc.: Waterloo, Ontario, Canada, 2002.
[19] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., irzewski, V.G., Montgomery, J.A.,Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A. D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith,T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A., 1998, Gaussian 98, Revision A.11.3, Gaussian, Inc., Pittsburgh, PA.
[20] Dewar, M.J.S., Zoebisc, E.G., and Healy, E.F., 1985, J. Am. Chem. Soc, 107, 3902.
[21] Stewart, J.J.P., 1989, J. Comput. Chem, 10, 209.
[22] Brooks, R., 1983, J. Comput. Chem, 4, 187.
[23] Allinger, N.L., Yuh, Y.H., and Lii, J.H., J. Am. Chem. Soc., 111, 8551.
[24] Gutsche, C.D., and Bauer, L.J., 1985, J. Am. Chem. Soc., 107, 6052-6059.
[25] Ungaro, R., Pochini, A., Andreetti, G.D., and Sangermano, F., 1984, J. Chem. Soc., Perkin Trans. 2, 1979 – 1985.
[26] Foresman, J.B, and Frisch, A., 1996, Exploring Chemistry with Electronic Structure Methods, 2nd Ed, Gaussian, Inc., Pittsburgh.
DOI: https://doi.org/10.22146/ijc.21596
Article Metrics
Abstract views : 1320 | views : 1086Copyright (c) 2010 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.