COORDINATION STATE AND AGGREGATION PROCESS OF BACTERIOCHLOROPHYLL A AND ITS DERIVATIVES : STUDY ON ACETONE-WATER AND METHANOL-WATER SOLVENTS

https://doi.org/10.22146/ijc.21571

Heriyanto Heriyanto(1*), Suryasatriya Trihandaru(2), Leenawaty Limantara(3)

(1) Mochtar Riady Institute for Nanotechnology, Lippo Karawaci
(2) Magister of Biology, Satya Wacana Christian University, Jl Diponegoro no.52-60, Salatiga
(3) Ma Chung Research Center, Universitas Ma Chung, Villa Puncak Tidar N-01, Malang 65151
(*) Corresponding Author

Abstract


Research on bacteriochlorophyll (BChl) a and its derivatives had been conducted to determine the coordination state and the aggregation process in acetone-water and methanol-water. The results showed that there were mainly two absorption peaks in BChl a and its derivatives, namely: Qx and Qy that were very sensitive to coordination state and aggregation process. The coordination state of pigment could be determined based on Qx absorption peak that was influenced by solvents. In addition, the donor number (DN) and taft parameters (β and π*) from each sovents could also be used to determine the coordination state. One or two of axial coordination toward center metal of BChl a and its derivatives have to be filled by donor electron as a foreign nucleophile. Mg-BChl was exist as five-coordinate complexes in acetone but as six-coordinate complexes in methanol. Five-coordinate complexes of Zn-BChl was occurred either in acetone or methanol. Cu-BChl was exist as four-coordinate complexes in acetone but altered to five-coordinate complexes in methanol. The agregation process was influenced by the existence of water added in pigment solution. The order of Mg-BChl a and its derivatives abilities to form new aggregate in acetone-water and methanol-water, in regard of water-addition percentage was as follow: Cu-BChl > Zn-BChl > Mg-BChl. Methanol was the solvent that could form aggregate of Mg-BChl and its derivatives at lower water-addition percentage compared to acetone.


Keywords


aggregation; bacteriochlorophyll & its derivatives; coordination state

Full Text:

Full Text PDF


References

[1] Oelze, J., 1985, Meth Microbiol, 18, 257.

[2] Permentier, H.P., Neerken, S., Overmann, J., and Amesz, J., 2001, Biochemistry, 40, 5573.

[3] Scheer, H., 2006, In Chlorophylls and BacterioChlorophylls: Biochemistry, Biophysics, Functions and Applications. Eds. Grimm, B., Porra, J., Rudiger, W., and Scheer, H., Advances in Photosynthesis and Respiration, 25, 1-26.

[4] Eichwurzel, I., Stiel, H., Teuchner, K., Leupold, D., Scheer, H., Salomon, Y., and Scherz, A., 2000, Photochemistry and Photobiology, 72 (2), 204.

[5] Evans, T.A. and Katz, J.J., 1975, Biochim. Biophys. Acta, 396, 414.

[6] Rebane, K. and Avarmaa, R., 1982, Chem. Phys., 68, 191.

[7] Callahan, P.M. and Cotton, T.M., 1987, J. Am. Chem. Soc., 109, 7001.

[8] Krawczyk, S., 1989, Biochim. Biophys. Acta, 976, 140.

[9] Naveke, A., Lapouge, K., Sturgis, J.N., Hartwich, G., Simonin, I., Scheer, H., and Robert, B., 1997, J. Raman Spectrosc., 28, 599.

[10] Umetsu, M., Wang, Z-Y., Kobayashi, M., and Nozawa, T., 1999, Biochim. Biophys. Acta, 1410, 19.

[11] Kania, A. and Fiedor, L., 2006, J. Am. Chem. Soc., 128 (2), 454.

[12] Ellervee, A. and Freiberg, A., 2008, Chemical Physics Letters, 450, 386.

[13] Linnanto, J., Oksanen, J.A.I., and Korppi-Tommola, J.E.I., 2002, Chem. Phys., 4, 3061.

[14] Katz, J.J., Shipman, L.L., Cotton, T.M., and Janson, T.R., 1978, Porphyrins, 5(Part C), 401.

[15] Sato, H., Uehara, K., Ishii, T., and Ozaki, Y., 1995, Biochemistry, 34 (24), 7854.

[16] Uehara, K., Ozaki, Y., Okada, K., and Olson, J.M., 1991, Chem. Lett., 6, 909.

[17] Scherz, A., Rosenbach-Belkin, V., and Fisher, J.R.E., 1990, Proc. Natl. Acad. Sci. USA, 87, 5430.

[18] Cory, M.G., Zerner, M.C., Hu, X., and Schulten, K., 1998, J. Phys. Chem. B, 102, 7640.

[19] Linnanto, J. and Korppi-Tommola, J.E.I., 2000, Phys. Chem., 2, 4962.

[20] Shipman, L.L. and Katz, J.J., 1977, J. Phys.Chem., 81 (6), 577.

[21] Cotton, T.M. and Van Duyne, R.P., 1979, American Chemical Society, 101 (25), 7605.

[22] Vladkova, R., 2000, Photochemistry and Photobiology, 71(1), 71.

[23] de Paula, J.C., Robblee, J.H., and Fasternack, R.F., 1995, Biophysical Journal, 68, 335.

[24] Fisher, J.R.E., Rosenbach-Belkin, V., and Scherz, A., 1990, Biophys. J. Biophysical Society, 58, 461.

[25] Oba, T., Watanabe, T., Mimuro, M., Kobayashi, M., and Yoshida, S., 1995, Photochemistry and photobiology, 63 (5), 639.

[26] Hinton, J.F. and Harpool, R.D., 1977, Journal of the American Chemical Society, 99 (2), 349.

[27] Katz, J.J., Bowman, M.K., Michalski, T.J., and Worcester, D.L., 1991, Chlorophylls, 211.

[28] Scherz, A., Rosenbach-Belkin, V., and Fisher, J.R.E., 1991, Chlorophylls, 237.

[29] White, W.I., 1978, Porphyrins, 5(Part C), 303.

[30] Blankenship, R.E., Trost, J.T., and Mancino, L.J., 1988, NATO ASI Series, Series A: Life Sciences, 149 (Photosynth. Bact. React. Cent.), 119.

[31] Hawthornthwaite, A.M. and Cogdell, R.J., 1991, Chlorophylls, 493.

[32] Alden, R.G., Lin, S.H., and Blankenship, R.E., 1992, Journal of Luminescence, 51(1-3), 51.

[33] Dougherty, T.J., 1992, Advances in Photochemistry, 17, 275.

[34] Spikes, J.D. and Bommer, J.C., 1991, Chlorophylls, 1181.

[35] Limantara, L., Kurimoto, Y., Furukawa, K., Shimamura, T., Utsumi, H., Katheder, I., Scheer, H., and Koyama, Y., 1995, Chemical Physics Letters, 236 (1,2), 71.

[36] Limantara, L., Sakamoto, S., Koyama, Y., and Nagae, H., 1997, Photochemistry and Photobiology, 65 (2), 330.

[37] Gouterman, M., 1961, Journal of Molecular Spectroscopy, 6, 138.

[38] Weiss, C., 1972, J. Mol. Spectrosc., 44, 37.

[39] Petke, J.D., Maggiora, J.M., Shipman, L.L., and Christoffersen, R.E., 1980, Photochem. Photobiol., 32, 399.

[40] Hartwich, G., Fiedor, L., Simonin, I., Cmiel, E., Schafer, W., Noy, D., Scherz, A., and Scheer, H., 1998, J. Am. Chem. Soc., 120, 3675.

[41] Gouterman, M., Wagnie`re, G.H., and Snyder, L.C., 1963, J. Mol. Spectrosc., 11, 108.

[42] Warshel, A. and Parson, W.W., 1987, J. Am. Chem. Soc., 109, 6143.

[43] Thompson, M.A., Zerner, M.C., and Fajer, J., 1991, J. Phys. Chem., 95, 5693.

[44] Katz, J.J., in Bioinorganic Chemistry. Eds. Eichhorn, G.L., Alsevier, Amsterdam, 1973, Vol. II, Chap. 29, 1022.

[45] Nishizawa, E.-I., Limantara, L., Nanjou, N., Nagae, H., Kakuno, T., and Koyama, Y., 1994, Photochemistry and Photobiology, 59 (2), 229.

[46] Koyama, Y., Limantara, L., Nishizawa, E., Misono, Y., and Itoh, K., 1995, Proc. Conference Santa Fe, Mexico.



DOI: https://doi.org/10.22146/ijc.21571

Article Metrics

Abstract views : 1470 | views : 1499


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.