SYNTHESIS OF COPPER OXIDE NANO PARTICLES BY USING Phormidium cyanobacterium

https://doi.org/10.22146/ijc.21498

Abdul Rahman(1*), Amri Ismail(2), Desi Jumbianti(3), Stella Magdalena(4), Hanggara Sudrajat(5)

(1) Department of Mechanical Engineering, Malikussaleh University, Jl. Tgk. Chick Ditiro No. 26 Lancang Garam, Po.Box.141, Lhokseumawe 24351, Nanggroe Aceh Darussalam, Indonesia
(2) Department of Chemical Engineering, Malikussaleh University, Jl. Tgk. Chick Ditiro No. 26 Lancang Garam, Po.Box.141, Lhokseumawe 24351, Nanggroe Aceh Darussalam, Indonesia
(3) Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita 565-0874, Japan
(4) Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita 565-0874, Japan
(5) Faculty of Technobiology, Atma Jaya Catholic University of Indonesia, Jl. Jenderal Sudirman 51, Jakarta 12930, Indonesia
(*) Corresponding Author

Abstract


In this paper, we report a suitable method for extracellular synthesis of copper oxide nano particles by using Phormidium cyanobacterium. We hypothesize that synthesis of copper oxide nano particles is believed to occur by extracellular hydrolysis of the cationic copper by certain metal chelating anionic proteins/reductase secreted by bacteria under simple experimental conditions like aerobic environment, neutral pH and room temperature. Proteins not only reduce Cu (II) into copper oxide nano particles (CONPs) but also plays significant role in stabilization of formed nanoparticles at room temperature. Further TEM, SEM, XRD and FTIR analysis have confirmed the synthesis of nano particles through microbial route. Extracellular induction of metal chelating proteins/reductase was analyzed by SDS-PAGE.


Keywords


Synthesis; copper oxide nano particles; Phormidium cyanobacterium

Full Text:

Full Text PDF


References

[1] Klabunde, K.J., 2002, Nanoscale Materials in chemistry, Wiley, New York, USA. p. 1.

[2] Kondo, R., Okimura, H., and Sakai, Y., 1971, Jpn. J. Appl. Phys.,10, 1547.

[3] Su, L.M., Grote, N., and Schmitt, F., 1984, Electron. Lett., 20, 716.

[4] Merikhi, J., Jungk, H.O., and Feldmann, C., 2000, J. Mater. Chem., 10, 1311-1314.

[5] Skarman, B., Wallenberg, L.R., Larsson, P.O., Andersson, A., and Helmersson, H., 1999, J. Catal., 181, 6-15.

[6] Ammar, S., Helfen, A., Jouini, N., Âvet, F.F., Rosenman, I., Villain, F.E., Molinie, Â., and Danot, M., 2001, J. Mater. Chem., 11, 186-192.

[7] Gabbay, E., 2006, J. Ind. Tex., 35, 4, 323-335.

[8] Sukhorukov, Y.P., Loshkareva, N.N., Samokhvalov, A.A., Naumov, S.V., Moskvin, A.S., and Ovchinnikov, S., 1998, J. Magn. Magn. Mater; 183, 356.

[9] Eranna, G., Joshi, B.C., and Runthala, D.P., 2004, Crit. Rev. Solid State Mater. Sci., 29, 111-188.

[10] Carnes, C.L., and Klabunde, K.J., 2003, J. Mol. Catal. A., 194, 227.

[11] Dai, P.C., Mook, H.A., Aeppli, G., Hayden, S.M., and Dogan, F., 2000, Nature, 406, 965.

[12] Punnoose, A, Magnone, A., and Seehra, M.S., 2001, Phys. Rev. B., 64, 14120.

[13] Serin, N., Serin, S., Horzum, A., and Elik, Y.C., 2005, Semicond. Sci. Technol., 20, 398-401.

[14] Fan, H., Yang, L., Hua, W., Wu, X.F., Wu, Z., Xie, S., and Zou, B., 2004, Nanotechnol., 15, 37-42.

[15] Kumar, R.V., Elgamiel, R., Diamant, Y., Gedanken, A., and Norwig, J., 2001, Langmuir, 17, 1406.

[16] Borgohain, K., Singh, J.B., Rama, M.V.R., Shripathi, T., and Mahamuni, S., 2000, Phys. Rev. B., 61, 11093.

[17] Xu, J.F., Ji, W., Shen, Z.X., Tang, S.H., Ye, X.R., Jia, D.Z., and Xin, H.X., 2000, J. Solid State Chem., 147, 516.

[18] Gan, Z.H., Yu, G.X., Tay, B.K., Tan, C.M., Zhao, Z.W., and Fu, Y.Q., 2004, J. Phys. D: Appl. Phys., 37, 81–85.

[19] Ghosh, M., and Rao, C.N.R., 2004, Chem. Phys. Lett., 393, 493-497.

[20] Neis, D.H., 1999, Appl. Microbiol. Biotechnol., 51, 730-750.

[21] Sastry, M., Ahmad, A., Khan, M.I., and Kumar, R., 2003, Curr. Sci., 85, 2, 25.

[22] Bharde, A., Wani, A., Shouche, Y., Pattayil, A.J., Bhagavatula, L.V., and Sastry, M., J. Am. Chem. Soc., 127, 9326-9327.R

[23] Ronald, M.A., 2003, Handbook of Microbiological Media, 2nd edition. CRC Press, New York, USA.

[24] Purwanto, E., 2008, Microbial Response to heavy metal toxicity at the biochemical level, Dissertation, Department of Biological Science and Technology, Tokai University, Japan.

[25] Yin, M., Wu, C.K., Lou, Y., Burda, C., Coberstein, T., Zhu, Y., and O’Brien, S., 2005, J. Am. Chem. Soc., 127, 9506-9511.

[26] Zhu, J., Li, D., Chen, H., Yang, X., Lu, L., and Wang, X., 2004, Mat. Lett., 58, 3324-3327.

[27] The XRD patterns were indexed with reference to the crystal structure of gold from the JCPDS-ICDD, PCPDF WIN version 1.30 [chart reference no. 450937 (CuO) and 330480 (Cu2O)].

[28] Kumar, T.P., and Geckeler, K.E., 2006, Small, 2, 5, 616-620.

[29] Bansal, V., Rautaray, D.l., Bharde, A., Ahire, K., Sanyal, A., Ahmad, A., and Sastry, M., 2005, J. Mater. Chem., 15, 2583–2589.

[30] Sharma, S., Chandra, H., Baweja, R., and Gade, W.N., 2003, Trends Clin. Biochem. Lab. Medicine, (Special Issue), 427-433.



DOI: https://doi.org/10.22146/ijc.21498

Article Metrics

Abstract views : 8095 | views : 8045


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.