EFFECT OF SCANDIUM ON HIDROGEN DISSOCIATION ENERGY AT MAGNESIUM SURFACE: AB INITIO DFT STUDY

https://doi.org/10.22146/ijc.21458

I Wayan Sutapa(1*), Ria Armunanto(2), Karna Wijaya(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Unpatti
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Austrian-Indonesian Centre for Computer Chemistry, Universitas Gadjah Mada
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Austrian-Indonesian Centre for Computer Chemistry, Universitas Gadjah Mada
(*) Corresponding Author

Abstract


The dissociative chemisorption of hydrogen on both pure and Sc-incorporated Mg(0001) surfaces have been studied by ab initio density functional theory (DFT) calculation. The calculated dissociation energy of hydrogen molecule on a pure Mg(0001) surface (1.200 eV) is in good agreement with comparable theoretical studies. For the Sc-incorporated Mg(0001) surface, the activated barrier decreases to 0.780 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Sc. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.

 

Keywords: Dissociation, Adsorption, Chemisorptions, DFT, Magnesium

Full Text:

Full Text PDF



DOI: https://doi.org/10.22146/ijc.21458

Article Metrics

Abstract views : 398 | views : 307


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.