CATALYTIC PERFORMANCES OF Fe2O3/TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION
Didik Prasetyoko(1*), Cholifah Endah Royani(2), Hamzah Fansuri(3), Zainab Ramli(4), Hadi Nur(5)
(1) Laboratory of Inorganic Chemistry, Department of Chemistry, Faculty of Mathematic and Sciences, Institut Teknologi Sepuluh Nopember (ITS), Surabaya
(2) Laboratory of Inorganic Chemistry, Department of Chemistry, Faculty of Mathematic and Sciences, Institut Teknologi Sepuluh Nopember (ITS), Surabaya
(3) Laboratory of Inorganic Chemistry, Department of Chemistry, Faculty of Mathematic and Sciences, Institut Teknologi Sepuluh Nopember (ITS), Surabaya
(4) Ibnu Sina Institute for Fundamental Science Studies, University Teknologi Malaysia (UTM), Johor Bahru
(5) Ibnu Sina Institute for Fundamental Science Studies, University Teknologi Malaysia (UTM), Johor Bahru
(*) Corresponding Author
Abstract
Hydroxylation reaction of phenol into diphenol, such as hydroquinone and catechol, has a great role in many industrial applications. Phenol hydroxylation reaction can be carried out using Titanium Silicalite-1 (TS-1) as catalyst and H2O2 as an oxidant. TS-1 catalyst shows high activity and selectivity for phenol hydroxylation reaction. However, its hydrophobic sites lead to slow H2O2 adsorption toward the active site of TS-1. Consequently, the reaction rate of phenol hydroxylation reaction is tends to be low. Addition of metal oxide Fe2O3 enhanced hydrophilicity of TS-1 catalyst. Liquid phase catalytic phenol hydroxylation using hydrogen peroxide as oxidant was carried out over iron (III) oxide-modified TS-1 catalyst (Fe2O3/TS-1), that were prepared by impregnation method using iron (III) nitrate as precursor and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption, pyridine adsorption, and hydrophilicity techniques. Catalysts 1Fe2O3/TS-1 showed maximum catalytic activity of hydroquinone product. In this research, the increase of hydroquinone formation rate is due to the higher hydrophilicity of Fe2O3/TS-1 catalysts compare to the parent catalyst, TS-1.
Keywords
Full Text:
Full Text PDFReferences
[1] Liou, R.M., Chen, S.H., and Hung, M.Y., 2005, Chemosphere, 59, 117–125.
[2] Yang, C.F., Qian, Y., and Zhang, L.J., 2006, Chem. Eng. J., 117, 179–185.
[3] Wojciech, K., Andrzej, W., and Wlodzimierz, R., 2004, Desalination, 163, 287–296.
[4] Ahmaruzzaman, M., and Sharma, D.K., 2005, J. Colloid Interface Sci., 287, 14–24.
[5] Will, I.B., Moraes, J.E., and Teixeira, A.C., 2004, Sep. Purif. Technol., 34, 51–57.
[6] Tomaszewska, M., Mozia, S., and Morawski, W., 2004, Desalination, 162, 79–87.
[7] Tziotzios, G., Teliou, M., and Kaltsouni, V., 2005, Biochem. Eng. J., 26, 65–71.
[8] Luck, F., 1999, Catal. Today, 53, 81–91.
[9] Tang, H., Ren, Y., Yue, B., Yan, S., and He, H., 2006, J. Mol. Catal. A: Chem., 260, 121–127.
[10] Liu, H., Lu, G., Guo, Y.L., Guo, Y., and Wang, J., 2006, Chem. Eng. J., 116, 179–186.
[11] Choi, J., Yoon, S., Jang, S., and Ahn, W., 2006, Catal. Today, 111, 280–287.
[12] Liu, X., Wang, X., Guo, X., and Li, G., 2004, Catal. Today, 93–95, 505–509.
[13] Kurian, M., and Sugunan, S., 2006, Chem. Eng. J., 115, 39–146.
[14] Vayssilov, G.N., and van Santen, R.A., 1998, J. Catal., 175, 170–174.
[15] Sun, J., Meng, X., Shi, Y., Wang, R., Feng, S., Jiang, D., Xu, R., and Xiao, F.S., 2000, J. Catal., 193, 199-206.
[16] Wilkenhöner, U., Langhendries, G., Baron, G.V., Gammon, D.W., Jacobs, P.A., and van Steen, E., 2001, J. Catal., 203, 201–212.
[17] Bonino, F., Damin, A., Ricchiardi, G., Ricci, M., Spano, G., D’Aloisio, R., Zecchina, A., Lamberti, C., Prestipino, C., and Bordiga, S., 2004, J. Phys. Chem. B, 108, 3573–3583.
[18] Armaroli, T., Bevilacqua, M., Trombetta, M., Milella, F., Alejandre, A.G., Ramirez, J., Notari, B., Willey, R.J., and Busca, G., 2001, Appl. Catal., A, 216, 59–71.
[19] Nur, H., Prasetyoko, D., Ramli, Z., and Endud, S., 2004, Catal. Commun., 5, 725–728.
[20] Prasetyoko, D., Ramli, Z., Endud, S., and Nur, H., 2007, React. Kinet. Catal. Lett., 86, 83–89.
[21] Ray, S., Mapolie, S.F., and Darkwa, J., 2007, J. Mol. Catal. A: Chem., 267, 143–148.
[22] Indrayani, S., 2008, Thesis, Chemistry Department, ITS, Surabaya, Indonesia.
[23] Taramasso, M., Perego, G., and Notari, B., 1983, U.S. Patents No. 4.410.501.
[24] Wang, Z., Wang, T., Wang, Z., and Jin, Y., 2004, J. Powder Technol., 139, 148–155.
[25] Li, Y.G., Lee, Y.M., and Porter, J.F., 2002, The Synthesis and Caracterization of Titanium Silicalite-1, Kluwer Academic Publishers, 0022–2461.
[26] Gao, H., Lu, W., and Chen, Q., 2000, Microporous Mesoporous Mater., 34, 307–315.
[27] Kung, H.H., 1989, Transition Metal Oxides: Surface Chemistry and Catalysis, Stud. Surf. Sci. Catal., Elsevier, New York.
[28] Emeis, C.A., 1993, J. Catal., 141, 347–354.
[29] Nur, H., Prasetyoko, D., Ramli, Z., and Endud, S., 2004, Catal. Commun., 5, 725–728.
[30] Prasetyoko, D., Fansuri, H., Ramli, Z., Endud, S., and Nur, H., 2009, Catal. Lett., 128, 177.
[31] Jin, C., Li, G., Wang, X., Yun, W., Zhao, L., and Sun, D., 2008, Microporous Mesoporous Mater., 111, 236–242.
DOI: https://doi.org/10.22146/ijc.21452
Article Metrics
Abstract views : 1485 | views : 960Copyright (c) 2010 Indonesian Journal of Chemistry
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.
View The Statistics of Indones. J. Chem.