STUDY ON THE STRUCTURAL BASIS OF PERIPHERAL LIGHT HARVESTING COMPLEXES (LH2) IN PURPLE NON-SULPHUR PHOTOSYNTHETIC BACTERIA

https://doi.org/10.22146/ijc.21450

Tatas H.P. Brotosudarmo(1*), Richard J. Cogdell(2)

(1) Division of Biochemistry & Cell Biology, University of Glasgow Biomedical Research Building, 126 University Place, G12 8TA
(2) Division of Biochemistry & Cell Biology, University of Glasgow Biomedical Research Building, 126 University Place, G12 8TA
(*) Corresponding Author

Abstract


Photosynthesis provides an example of a natural process that has been optimized during evolution to harness solar energy efficiently and safely, and finally to use it to produce a carbon-based fuel. Initially, solar energy is captured by the light harvesting pigment-protein complexes. In purple bacteria these antenna complexes are constructed on a rather simple modular basis. Light absorbed by these antenna complexes is funnelled downhill to reaction centres, where light drives a trans-membrane redox reaction. The light harvesting proteins not only provide the scaffolding that correctly positions the bacteriochlorophyll a and carotenoid pigments for optimal energy transfer but also creates an environment that can modulate the wavelength at which different bacteriochlorophyll molecules absorb light thereby creating the energy funnel. How these proteins can modulate the absorption spectra of the bacteriochlorophylls will be discussed in this review.

Keywords


photosynthesis; peripheral light harvesting complex; H-bonding; energy transfer

Full Text:

Full Text PDF


References

[1] Blankenship, R.E. 2002, Molecular mechanisms of photosynthesis, Blackwell Science, Oxford.

[2] Cogdell, R.J., Gardiner, A.T., Hashimoto, H., Brotosudarmo, T.H., 2008, Photochem. Photobiol. Sci., 7, 1150–1158.

[3] Scheuring, S., and Sturgis, J.N., 2009, Photosynth. Res., 102, 197–211.

[4] Bahatyrova, S., Frese, R.N., Siebert, C.A., Olsen, J.D., Van Der Werf, K.O., Van Grondelle, R., Niederman, R.A., Bullough, P.A., Otto, C., and Hunter, C.N., 2004, Nature, 430, 1058–1062.

[5] Hu, X., Ritz, T., Damjanovic, A., Autenrieth, F., and Schulten, K., 2002, Q. Rev. Biophys., 35, 1, 1–62.

[6] Cogdell, R.J., Howard, T.D., Isaacs, N.W., McLuskey, K., and Gardiner, A.T., 2002, Photosynth. Res., 74, 135–141.

[7] Cogdell, R.J., and Scheer, H., 1985, Photochem. Photobiol., 42, 6, 669–678.

[8] Michel, H., and Oesterhelt, D., 1980, Proc. Natl. Acad. Sci. U.S.A., 77, 3, 1283–1285.

[9] Michel, H., 1982, EMBO J., 1, 10, 1267–1271.

[10] Garavito, R.M., and Rosenbusch, J.P., 1980, J. Cell. Biol., 86, 327–329.

[11] Michel, H., 1982, J. Mol. Biol., 158, 567–572.

[12] Papiz, M.Z., Hawthornthwaite, A.M., Cogdell, R.J., Woolley, K.J., Wightman, P.A., Ferguson, L.A., and Lindsay, J.G., 1989, J. Mol. Biol., 209, 833–835.

[13] Cogdell, R.J., and Hawthornthwaite, A.M., In The photosynthetic reaction center; Eds. Deisenhofer, J., Norris, J. R., Academic Press, INC., 1993, Vol. 1.

[14] McLuskey, K., Prince, S.M., Cogdell, R.J., and Isaacs, N.W., 2001, Biochemistry, 40, 30, 8783–8789.

[15] McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaitelawless, A.M., Papiz, M.Z., Cogdell, R.J., and Isaacs, N.W., 1995, Nature, 374, 517–521.

[16] Papiz, M.Z., Prince, S.M., Howard, T., Cogdell, R.J., and Isaacs, N.W., 2003, J. Mol. Biol., 326, 1523–1538.

[17] Koepke, J., Hu, X., Muenke, C., Schulten, K., and Michel, H., 1996, Structure, 4, 581–597.

[18] Hunter, C.N., Hundle, B.S., Hearst, J.E., Lang, H.P., Gardiner, A.T., Takaichi, S., and Cogdell, R.J., 1994, J. Bacteriol., 176, 12, 3692–3697.

[19] Sundström, V., and van Grondelle, R., In Anoxygenic Photosynthesis Bacteria, vol 2. Advances in Photosynthesis; Ed. Blankenship, R. E., Madigan, M.T., and Bauer, C.E., Kluwer Academic Publisher, Dordrecht, 1995.

[20] Sundström, V., Pullerits, T., and van Grondelle, R., 1999, J. Phys. Chem. B, 103, 2327–2346.

[21] Polli, D., Cerullo, G., Lanzani, G., De Silvestri, S., Hashimoto, H., and Cogdell, R.J., 2006, Biophys. J., 90, 7, 2486–2497.

[22] MacPherson, A.N., Arellano, J.B., Fraser, N.J., Cogdell, R.J., and Gillbro, T., 2001, Biophys. J., 80, 2, 923–930.

[23] Kennis, J.T.M., Streltsov, A.M., Vulto, S.I.E., Aartsma, T.J., Nozawa, T., and Amesz, J., 1997, J. Phys. Chem. B, 101, 7827–7834.

[24] Novoderezhkin, V., Wendling, M., and van Grondelle, R., 2003, J. Phys. Chem. B, 107, 11534–11548.

[25] Kennis, J.T.M., Streltsov, A.M., Permentier, H., Aartsma, T.J., and Amesz, J., 1997, J. Phys. Chem. B, 101, 8369–8374.

[26] Agarwal, R., Rizvi, A.H., Prall, B.S., Olsen, J.D., Hunter, C.N., and Fleming, G.R. 2002, J. Phys. Chem. A, 106, 7573–7578.

[27] Mercer, I.P., El-Taha, Y.C., Kajumba, N., Marangos, J.P., Tisch, J.W., Gabrielsen, M., Cogdell, R.J., Springate, E., and Turcu, E., 2009, Phys. Rev. Lett., 102, 5, 057402.

[28] Hess, S., Chachisvilis, M., Timpmann, K., Jones, M.R., Fowler, G.J.S., Hunter, C.N., and Sundstrom, V., 1995, Proc. Natl. Acad. Sci. U.S.A., 92, 12333–12337.

[29] Visscher, K.J., Bergstrom, H., Sundström, V., Hunter, C.N., and Vangrondelle, R., 1989, Photosynth. Res., 22, 211–217.

[30] Gardiner, A.T., Takaichi, S., and Cogdell, R.J., 1993, Biochem. Soc. Trans., 21, 6S.

[31] Bissig, I., Brunisholz, R.A., Suter, F., Cogdell, R.J., and Zuber, H., 1988, Z. Naturforsch., C: Biosci., 43, 77–83.

[32] Sturgis, J.N., Jirsakova, V., Reiss-Husson, F., Cogdell, R.J., and Robert, B., 1995, Biochemistry, 34, 33, 517–523.

[33] Fowler, G.J., Sockalingum, G.D., Robert, B., and Hunter, C.N., 1994, Biochem. J., 299, 3, 695–700.

[34] Olsen, J.D., Sturgis, J.N., Westerhuis, W.H., Fowler, G.J., Hunter, C.N., and Robert, B., 1997, Biochemistry, 36, 12625–12632.

[35] Fowler, G.J.S., Visschers, R.W., Grief, G.G., Vangrondelle, R., and Hunter, C.N., 1992, Nature, 355, 848–850.

[36] Sauer, P.R.R., Lottspeich, F., Unger, E., Mentele, R., and Michel, H., 1996, Biochemistry, 35, 6500–6507.

[37] Cogdell, R.J., Gall, A., and Köhler, J., 2006, Q. Rev. Biophys., 39, 227–324.

[38] Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., Pelletier, D.A., Beatty, J.T., Lang, A.S., Tabita, F.R., Gibson, J.L., Hanson, T.E., Bobst, C., Torres, J.L., Peres, C., Harrison, F.H., Gibson, J., and Harwood, C.S., 2004, Nat. Biotechnol., 22, 55–61.

[39] Tadros, M.H., and Waterkamp, K., 1989, EMBO J., 8, 1303–1308.

[40] Tadros, M.H., Katsiou, E., Hoon, M.A., Yurkova, N., and Ramji, D.P., 1993, Eur. J. Biochem., 217, 3, 867–875.

[41] Evans, M.B., Hawthornthwaite, A.M., and Cogdell, R.J. 1990, Biochim. Biophys. Acta, 1016, 1, 71–76.

[42] Gall, A., and Robert, B. 1999, Biochemistry, 38, 16, 5185–5190.

[43] Fowler, G.J.S., and Hunter, C.N., 1996, J. Biol. Chem., 271, 23, 13356–13361.

[44] Nishimura, Y., Shimada, K., Yamazaki, I., and Mimuro, M., 1993, FEBS Lett., 329, 3, 319–323.

[45] Hartigan, N., Tharia, H.A., Sweeney, F., Lawless, A.M., and Papiz, M.Z., 2002, Biophys. J., 82, 2, 963–977.

[46] Scheuring, S., Goncalves, R.P., Prima, V., and Sturgis, J.N., 2006, J. Mol. Biol., 358, 83–96.

[47] Evans, K., Fordham-Skelton, A.P., Mistry, H., Reynolds, C.D., Lawless, A.M., and Papiz, M.Z., 2005, Photosynth. Res., 85, 169–180.

[48] van Mourik, F., Hawthornthwaite, A.M., Vonk, C., Evans, M.B., Cogdell, R.J., Sundström, V., and Vangrondelle, R., 1992, Biochim. Biophys. Acta, 1140, 85–93.

[49] Brotosudarmo, T.H.P., 2009, PhD Thesis, University of Glasgow.

[50] Brotosudarmo, T.H., Kunz, R., Bohm, P., Gardiner, A.T., Moulisova, V., Cogdell, R.J., and Kohler, J., 2009, Biophys. J., 97, 1491–1500.

[51] Moulisova, V., Luer, L., Hoseinkhani, S., Brotosudarmo, T.H., Collins, A.M., Lanzani, G., Blankenship, R.E., and Cogdell, R.J., 2009, Biophys. J., 97, 3019–3028.

[52] Goncalves, R.P., Bernadac, A., Sturgis, J.N., and Scheuring, S., 2005, J. Struct. Biol., 152, 221–228.



DOI: https://doi.org/10.22146/ijc.21450

Article Metrics

Abstract views : 1513 | views : 1058


Copyright (c) 2010 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.