MODIFIED KAOLIN WITH CATIONIC SURFACTANT FOR GIBBERELLIC ACID CARRIER MATERIALS

https://doi.org/10.22146/ijc.21427

Sunardi Sunardi(1*), Utami Irawati(2), Yateman Arryanto(3), Sutarno Sutarno(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km. 35,8 Banjarbaru, South Kalimantan 70714
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km. 35,8 Banjarbaru, South Kalimantan 70714
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281
(*) Corresponding Author

Abstract


Synthesis of surfactant modified kaolin from natural kaolin from Tatakan, Tapin, South Kalimantan and its application for carrier material of gibberellic acid have been conducted. The kaolin modification was done by surface engineering using cationic surfactant cetyltrimethylammonium bromide (C16TMABr). The characterizations of kaolin and surfactant modified kaolin were carried out by XRF, SEM, XRD, FTIR and TGA/DTA. The adsorption capacity of kaolin was determined by Langmuir adsorption isotherm model. The result showed that kaolin from Tatakan, South Kalimantan consist of kaolinite, halloysite, quartz, chlorite, and christobalite. Surface modification using cationic surfactant showed that increasing surfactant content onto kaolin was proportional to the amount of surfactant loaded. Gibberellic acid was partitioned into the organic phase created by the surfactant tails of the C16TMA+ modified kaolin. The calculations result by Langmuir adsorption isotherm model showed that the highest increasing adsorption capacity occurred on surfactant modified kaolin with surfactant/CEC ratio of 2.0, with the adsorption capacity of 28.41 mg/g.

Keywords


natural kaolin; cationic surfactant; gibberellic acid

Full Text:

Full Text PDF


References

[1]   Gusek, T.W., and Kinsella, J.E., 1988, Food Technol., 42, 1, 102–107.

[2]   Liang, J.F., Li, Y.T., and Yang, V.C., 2000, J. Pharm. Sci., 89, 8, 979–990.

[3]   Park, S.W., Kim, Y.I., Chung, K.H., Hong, S.I., and Kim, S.W., 2002, React. Funct. Polym., 51, 2, 79–92.

[4]   Qiu, D., and Hou, W., 2009, Colloids Surf., A, 336, 1-3, 12–17.

[5]   Sunardi., Arryanto, Y., and Sutarno., 2009, Indo. J. Chem., 9, 3, 373–379.

[6]   Joshi, P., Rayalu, S., Bansiwal, A., and Juwarkae, A.A., 2007, Plant Soil, 296, 1-2, 151–158.

[7]   Cruz, M.S.R., Andrades, M.S., and Martin, M.J.S., 2008, J. Hazard. Mater., 160, 200–207.

[8]   Cardoso, L.P., Celis, R., Cornejq, J., and Valim, J.B., 2006, J. Agric. Food Chem., 54, 5968–5975.

[9]   Piletska, E.V., Turner, N.W., Turner, A.P.F., and Piletsky, S.A., 2005, J. Controlled Release, 108, 1, 132–139.

[10] Takahashi, T., Yamada, Y., Kataoka, K., and Nagasaki, Y., 2005, J. Controlled Release, 107, 3, 408–416.

[11] Carretero, M.I., 2002, Appl. Clay Sci., 21, 3-4, 155–163.

[12] Li, Z., and Bowman, R.S., 2001, Water Res., 35, 16, 3771–3776.

[13] Khrisna, B.S., Murty, D.S.R., and Prakash, J.B., 2001, Appl. Clay Sci., 20, 1-2, 65–71.

[14] Lee, S.Y., and Kim, S.J., 2002, Appl. Clay Sci., 22, 1-2, 55–63.

[15] Froehner, S., Martins, R.F., Furukawa, W., and Errera, M.R, 2009, Water Air Soil Pollut., 199, 1-4, 107–113.

[16] Camazano, M.S., and Martin, M.J.S., 1994, Water Air Soil Pollut., 74, 1-2, 19–28.

[17] Sheng, G.Y., and Boyd, S.A., 2000, Clays Clay Miner., 48, 1, 43–50.

[18] Gullick, R.W., and Weber, W.J., 2001, Environ. Sci. Technol., 35, 7, 1523–1530.

[19] Guzman, M.C., Celis, R., Hermosin, M.C., Koskinen, W.C., and Cornejo, J., 2005, J. Agric. Food Chem., 53, 19, 7502–7511.

[20] Groisman, L., Acha, C.R., Gerstl, Z., and Mingelgrin, U., 2004, Appl. Clay Sci., 24, 3-4, 159–166.

[21] Carrizosa, M.J., Calderon, M.J., Hermosın, M.C., and Cornejo, J., 2000, Sci. Total Environ., 247, 285–293.

[22] Lagaly, G., 2001, Appl. Clay Sci., 18, 5-6, 205–209.

[23] Ceihan, O., and Baybas, D., 2001, Turk. J. Chem., 25, 193–200.

[24] Jaruwong, P., Aumpush, J., and Kiattikomol, R., 2005, Thammasat Int. J. Sci. Tech., 10, 1, 47-56.

[25] Ergun, N., Topcuoglu, S.F., and Yildiz, A., 2002, Turk. J. Bot., 26, 13–18.

[26] Nandi, B.K., Goswami, A., and Purkait, M.K., 2009, Appl. Clay Sci., 42, 3-4, 583–590.

[27] Vimonses, V., Lei, S., Jin, B., Chow, C.W.K., and Saint, C., 2009, Appl. Clay Sci., 43, 3-4, 465–472.

[28] Murray, H.H., 2000, Appl. Clay Sci., 17, 5-6, 207–221.

[29] Zaman, A.A., Tsuchiya, R., and Moudgil, B.M., 2002, J. Colloid Interface Sci., 256, 1, 73–78.

[30] Vujakovic, A.D., Djuricic, M.A., and Canovic, M.R.T., 2001, J. Therm. Anal. Calorim., 63, 162–172.

[31] Kooli, F., Khimyak, Y.Z., Alshahateet, S.F., and Chen, F., 2005, Langmuir, 21, 19, 8717–8723.

[32] Chandrasekhar, S., 1996, Clay Miner., 31, 253–261.

[33] Saikia, N.J., Bharali, D.J., Sengupta, P., Bordoloi, D., Goswamee, R.L., Saikia, P.C., and Borthakur., 2003, App. Clay Sci., 24, 1-2, 93–103.

[34] Dion, P., Alcover, J.F., Bergaya, F., Ortega, A., Llewellyn, P.L., and Rouquerol, F., 1998, Clay Miner., 33, 2, 269–276.

[35] Zhou, X., Huang, Q., Chen, S., and Yu, Z., 2005, Appl. Clay Sci., 30, 2, 87–93.

[36] Emmanuel, U., Kayode, O.A., and Folasegun, A.D., 2008, J. Hazard. Mater., 157, 2-3, 397–409.



DOI: https://doi.org/10.22146/ijc.21427

Article Metrics

Abstract views : 931 | views : 1530


Copyright (c) 2011 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.