Eddy Heraldy(1*), Triyono Triyono(2), Karna Wijaya(3), Sri Juari Santosa(4)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. A. Sutami 36A, Kentingan, Surakarta 57126
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Sekip Utara, Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Sekip Utara, Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada Sekip Utara, Yogyakarta 55281
(*) Corresponding Author


Attempts to synthesis of Mg/Al HTlc using magnesium from several raw material resources are widely investigated. One of raw material would purpose as source of magnesium to synthesis of Mg/Al HTlc is brine water which is well known as the desalination process wastewater. Mg/Al HTlc are widely investigated for their potential applications in research and industrial processes as adsorbents, anionic exchange, catalysts and /or catalyst precursors for the preparation of inorganic materials and pharmaceutical industry excipients. As adsorbents, Mg/Al HTlc are receiving greater interests in the environmental community due to their high adsorption capacity. However, there is no literature available on the synthesis of Mg/Al HTlc from brine water except from artificial seawater. The objective of this research is to synthesis of Mg/Al HTlc from brine water and its ability tested for eosin yellow (EY) removal. Characterization of the Mg/Al HTlc synthesized was confirmed through X-ray Diffraction and FT-IR Spectroscopy. The effect of various experimental parameters was investigated using a batch adsorption technique. In this manner, the adsorption isotherms, adsorption kinetics, and pH effects upon EY adsorption on Mg/Al HTlc were examined. The result showed that EY data fit well with the pseudo-second order kinetic model. The isothermal data could be well described by the Freundlich equation. The adsorption capacity was 2.41 × 10-1 mol g-1, and adsorption energy of EY was 24.89 kJ mol-1.


Mg/Al hydrotalcite-like; brine water; adsorption; eosin yellow; adsorption capacity

Full Text:

Full Text PDF


[1] Mohamed, A.M.O., Maraqa, M., and Al Handhaly, J., 2005, Desalination, 182, 1-3, 411–433.

[2] Cavani, F., Trifiro, F., and Vaccari, A., 1991, Catal. Today, 11, 173–301.

[3] de Roy, A., Forano, C., El Malki, K. and Besse, J.P., 1992, In Synthesis of Microporous Materials, Occelli, L., Robson, H., Eds., Vol. 2, Van Nostrand Reinhold, New York.

[4] Newman, S.P., and Jones, W., 1998, New J. Chem., 22, 105–115.

[5] Vaccari, A., 1998, Catal. Today, 41, 53–71.

[6] Vaccari, A., 1999, Appl. Clay Sci., 14, 161–198.

[7] Reichle, W.T., 1986, Solid State Ionics, 22, 135–141.

[8] Kameda, T., Yoshioka, T., Uchida, M., and Okuwaki, A., 2000, Mol. Cryst. Liq. Cryst., 341, 407–412.

[9] Heraldy, E., Triyono, Santosa, S.J., Wijaya, K., Prasasti, D., Savitri, G., Hermawan, D., Iwa, R., and Suryo, E.H., 2009, Hydrotalcite-like Synthesis using Magnesium from Brine Water, Proceeding of 2009 International Conference on Chemical, Biological and Environmental Engineering (CBEE), ISBN 13 978-981-4293-46-4 dan ISBN 10 981-4293-46-6, World Scientific Publishing Co. Pte. Ltd., Singapore.

[10] Heraldy, E., Triyono, Santosa, S.J., Wijaya, K., Alnavis, N.B., Rustina, and Hardianti, E.S., 2010, Preliminary studies on hydrotalcite-like synthesis using magnesium from desalination waste, Proceeding of Pure and Applied Chemistry International Conference (PACCON 2010), ISBN 978-974-523-230-3, Ubon Ratchathani, Thailand.

[11] Ni, Z.M., Xia, S.J., Wang, L.G., Xing, F.F., and Pan, G.X., 2007, J. Colloid Interface Sci., 316, 284–291.

[12] Tsai, W.T., Chang, C.Y., Lin, M.C., Chien, S.F., Sun, H.F., and Hsieh, M.F., 2001, Chemosphere, 45, 51–58.

[13] O’Neill, C., Hawkes, F.R., Hawkes, D.L., Lourenco, N.D., Pinheiro, H.M., and Delee, W., 1999, J. Chem. Technol. Biotechnol., 74, 1009–1018.

[14] Zhu, M.X., Li, Y.P., Xie, M., and Xin, H.Z., 2005, J. Hazard. Mater. B, 120, 163–171.

[15] Meshko, V., Markovska, L., Mincheva, M., and Rodrigues, A.E., 2001, Water Res., 35, 3357–3366.

[16] Janos, P., Buchtova, H., and Ryznarova, M., 2003, Water Res., 37, 4938–4944.

[17] Wang, C.C., Juang, L.C., Hsu, T.C., Lee, C.K., Lee, J.F., and Huang, F.C., 2004, J. Colloid Interface Sci., 273, 80–86.

[18] Faria, P.C.C., Orfao, J.J.M., and Pereira, M.F.R., 2004, Water Res., 38, 2043–2052.

[19] Nakagawa, K., Namba, A., Mukai, S.R., Tamon, H., Ariyadejwanich, P., and Tanthapanichakoon, W., 2004, Water Res., 38, 1791–1798.

[20] Goswamee, R.L., Sengupta, P., Bhattacharyya, K.G., and Dutta, D.K., 1998, Appl. Clay Sci., 13, 21–34.

[21] Crepaldi, E.L., Tronto, J., Cardoso, L.P., and Valim, J.B., 2002, Colloids Surf., A, 211, 103–114.

[22] Tezuka, S., Chitrakar, R., Sonoda, A., Ooi, K., and Tomida, T., 2004, Green Chem., 6, 104–109.

[23] Hu, Q., Xu, Z., Qiao, S., Haghseresht, F., Wilson, M., and Lu, G.Q., 2007, J. Colloid Interface Sci., 308, 191–199.

[24] Ulibarri, M.A., Pavlovic, I., Barriga, C., Hermosin, M.C., and Cornejo, J., 2001, Appl. Clay Sci., 18, 17–27.

[25] Xu, Z.P., and Lu, G.Q., 2005, Chem. Mater., 17, 5, 1055–1062.

[26] Sabnis, R.W., 2010, Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications, A John Wiley & Sons, Inc., Hoboken, New Jersey.

[27] Ho, Y.S., and McKay, G., 1998, Chem. Eng. J., 70, 115–124.

[28] Costa, F.R., Leuteritz, A., Wagenknecht, U., Jehnichen, D., Haubler, L. and Heinrich, G., 2007, Appl. Clay Sci., 38, 153–164.

[29] Porkodi, K., and Kumar, K.V., 2007, J. Hazard. Mater., 143, 311–327.


Article Metrics

Abstract views : 1943 | views : 1293

Copyright (c) 2011 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.