SYNTHESIS OF POLY(ACRYLAMIDE-CO-ACRYLIC ACID)-STARCH BASED SUPERABSORBENT HYDROGELS BY GAMMA RADIATION: STUDY ITS SWELLING BEHAVIOR

https://doi.org/10.22146/ijc.21349

Erizal Erizal(1*)

(1) Centre for the Applications Isotopes and Radiation Technology, BATAN, Jl. Lebak Bulus Raya no. 49, Jakarta 12070
(*) Corresponding Author

Abstract


Modification of poly (acrylamide-co-acrylic acid) superabsorbent hydrogels with varying starch concentration (1-3%) via simultaneous gamma radiation have been carried out. The structure and morphology of copolymers were characterization by Fourier transform infra red spectroscopy and scanning electron microscopy. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the an increase in the starch content present in the hydrogels (1-3%) and with increase irradiation dose  from 10 kGy up to 30 kGy, the swelling ratio decreased from 250-100 g/g. Incorporation of 1% starch increases the EDS of the hydrogels up 350 g/g. Under maximum conditions, poly(AAm-co-AA)-starch hydrogels with high gel fraction (~93%) was prepared from aqueous solution containing 5% AAm, 15% acrylic acid and 0-3% starch. The hydrogels were sensitive against salts solution.

Keywords


Radiation; superabsorbent; Acrylamide; Acrylic acid; alginate

Full Text:

Full Text PDF


References

[1] Chen, J., Park, H., and Park, K., 1999, J. Biomed. Mater. Res., 44, 1, 53–62.

[2] Superabsorbents, Website of the European Disposables and Nonwovens Association (EDANA), http://www.edana.org, accessed on May 30, 2011.

[3] Bucholz, F.L., and Graham, T., 1998, Modern Superabsorbent Polymer Technology, Wiley-VCH, New York.

[4] Li, S., 2010, Bioresour. Technol., 101, 7, 2197–2202.

[5] Zheng, Y., Huang, D., and Wang, A., 2009, Anal. Chim. Acta, 1–8.

[6] He, X.S., Liao, Z., Huang, P.Z., Duan, J.X., Ge, R.S., Li, H.P., and Zhao, H.P., 2006, Trans. Chin. Soc. Agric. Eng., 22,184–190.

[7] He X.S., and Zhang, F.D., 2005, Plant Nutr. Fert. Sci., 11, 334–339.

[8] Kambayashi, T., Mikata, H., Umezu, H., and Matsunaga, H., 1998, J. Flourine Chem., 87, 123–132.

[9] Flores, G., Herraiz, M., and del Castillo, M.L.R., 2006, J. Sep. Sci., 29, 17, 267–272.

[10] Bruggiesser, R., 2005, J. Wound Care, 14, 9, 436–442.

[11] Sannino, A., Esposito, A., De Rosa, A., Cozzolino, A., Ambrosio, L., and Nicolas, L., 2003, J. Biomed. Mater. Res. A, 67, 3, 1016–1024.

[12] Liu, M.Z., Liang, R., Zhan, F.L., liu, Z., and Niu, A.Z., 2007, Polym. Int., 56,729–737.

[13] Yoshimura, Y., and Fujioka, R., 2008, Cellul. Commun., 15, 2, 58–61.

[14] Yoshimura, Y., Yoshimura, R., Seki, C., and Fujioka, R., 2006, Carbohydr. Polym., 64,2, 341–349.

[15] Askari, F., Nafisi, S., Omidian, H., and Hashemi, S.A., 1993, J. Appl. Polym. Sci., 50, 10, 1851–1855.

[16] Karadag, E., Uzum, O.B., and Saraydin, D., 2005, Mater. Des., 26, 4, 265–270.

[17] Tomar, R.S., Gupta, I., Singhai, R., and Nagpal, A.K., 2007, Des. Monomers Polym., 10, 1, 49–66.

[18] Erizal, 2010, Sci. J. Appl. Isot Radiat., 6, 2, 105–116.

[19] Wasikiewics, J.M., Wach, R.A., Nagasawa, N., Mitomo, H., and Yoshii, F., 2005, Radiat. Phys. Chem., 73, 5, 287–295.

[20] Charlesby, A., 1960, Atomic Radiation and Polymers, Oxford: Pergamon Press.

[21] Jing, R., Yancun, Z., Jiuqiang, L., and Hongfei, H., 2001, Radiat. Phys. Chem., 62, 277–281.



DOI: https://doi.org/10.22146/ijc.21349

Article Metrics

Abstract views : 2258 | views : 3235


Copyright (c) 2012 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.