Effect of Gamma Irradiation on Mechanical and Thermal Properties of Fish Gelatin Film Isolated from Lates Calcarifer Scales

https://doi.org/10.22146/ijc.21322

Dian Pribadi Perkasa(1*), Erizal Erizal(2), Darmawan Darmawan(3), Akhmad Rasyid(4)

(1) Centre for the Application of Isotopes and Radiation Technology, BATAN, Jl. Lebak Bulus Raya No.49, Pasar Jumat, Jakarta 12070
(2) Centre for the Application of Isotopes and Radiation Technology, BATAN, Jl. Lebak Bulus Raya No.49, Pasar Jumat, Jakarta 12070
(3) Centre for the Application of Isotopes and Radiation Technology, BATAN, Jl. Lebak Bulus Raya No.49, Pasar Jumat, Jakarta 12070
(4) Centre for the Application of Isotopes and Radiation Technology, BATAN, Jl. Lebak Bulus Raya No.49, Pasar Jumat, Jakarta 12070
(*) Corresponding Author

Abstract


The objective of this research was to investigate the effect of gamma irradiation on mechanical and thermal properties of fish gelatin films prepared from scales of Lates calcarifer. The films were irradiated by gamma rays at varied doses (0-50 kGy). The mechanical and thermal properties of irradiated gelatin films were measured by using colorimeter, Universal Testing Machine, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared (FTIR) spectrophotometer. The results showed that increasing of irradiation dose up to 50 kGy, the color of irradiated film did not change significantly (p < 0.05). The tensile strength of irradiated film was increased with no differences among dose variation but there was no change on elongation at break value (p < 0.05). The DSC spectra of irradiated gelatin films showed that irradiation did not affect melting temperature (Tm). In contrast, the glass transition temperature (Tg) of irradiated film has slight tendency to increase with increasing of radiation doses. In general, the FTIR spectra confirmed that gamma irradiation up to 50 kGy affected the mechanical properties of gelatin films.

Keywords


gamma irradiation; fish gelatin film; mechanical property; thermal property; Lates calcarifer

Full Text:

Full Text Pdf


References

[1] Miller, K.S., and Krochta, J.M., 1997, Trends Food Sci. Technol., 8, 7, 228–237.

[2] Sobral, P.J.A., and Habitante, A.M.Q.B., 2001, Food Hydrocolloids, 15, 4-6, 377–382.

[3] Park, J.W., Whiteside, W.S., and Cho, S.Y., 2008, LWT-Food Sci. Technol., 41, 4, 692–700.

[4] Ikada, Y., and Tabata, Y., 2002, “Significance of Drug Delivery in Tissue Engineering” in Tissue Engineering and Biodegradable Equivalent: Scientific and Clinical Application. Eds. Lewandrowski, K.U., Wise, D.L., Trantolo, D.J., Gresser, J.D., Yaszemski, M.J., and Altobelli, D.E., Mercel-Decker Inc., New York, 154–194.

[5] Matsuda, S., Iwata, H., Se, N., and Ikada, Y., 1999, J. Biomed. Mater. Res., 45, 1, 20–27.

[6] Vaz, C.M., de Graaf, L.A., Reis, R.L., and Cunha, A.M., 2003, J. Mater. Sci. - Mater. Med., 14, 789–796.

[7] Kim, T.S., Bürklin, T., Schacher, B., Ratka-Krüger, B., Schaecken, M.T., Renggli, H.H., Fiehn, W., and Eickholz, P., 2002, J. Periodontol., 73, 11, 1285–1291.

[8] Yue, I.C., Poff, J., Cortés, M.E., Sinisterra, R.D., Faris, C.B., Hildgen, P., Langer, R., and Shastri, 2004, Biomaterials, 25, 17, 3743–3750.

[9] Djagny, K.B., Wang, Z., and Xu, S., 2001, Crit. Rev. Food Sci. Nutr., 41, 6, 481–492.

[10] Pérez-Mateos, M., Montero, P., and Gómez-Guillén, M.C., 2009, Food Hydrocolloids, 23, 1, 53–61.

[11] Duflo, S., Thibeault, S.L., Li, W., Shu, X.Z., and Prestwich, G.D., 2006, Tissue Eng., 12, 8, 2171–2180.

[12] Miyoshi, M., Kawazoe, T., Igawa, H.H., Tabata, Y., Ikada, Y., and Suzuki, S., 2005, J. Biomater. Sci. Polym. Ed., 16, 7, 893–907.

[13] Lee, S.B., Jeon, H.W., Lee, Y.W., Cho, S.K., and Lee, Y.M., 2003, Macromol. Res., 11, 5, 368–374.

[14] Chiou, B-S., Avena-Bustillos, R.J., Bechtel, P.J., Jafri, H., Narayan, R., Imam, S.H., Glen, G.M., and Orts, W.J., 2008, Eur. Polym. J., 44, 11, 3748–3753.

[15] Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., and Tanaka, M., 2006, Food Hydrocolloids, 20, 4, 492–501.

[16] Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka, M., 2006, Eur. Food Res. Technol., 222, 229-235.

[17] Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka, M., 2006, Eur. Food Res. Technol., 222, 650–657.

[18] Haug, I.J., Daget, K.I, and Smidsrød, O., 2004, Food Hydrocolloids, 18, 2, 203–213.

[19] Garrison, W.M., 1987, Chem. Rev., 87, 2, 381–398.

[20] Von Sonntag, C., 1995, “Trend of Research in Radiation Chemistry” in Advanced Radiation Chemistry Research: Current Status. IAEA-TECDOC-834, International Atomic energy Agency, Vienna, 11–41.

[21] Fu, J., Shen, W., Bao, J., and Chen, Q., 2000, Radiat. Phys. Chem., 57, 345-348.

[22] Gul-E-Noor, F., Khan, M.A., Ghoshal, S., Mazid, R.A., Chowdhury, A.M.S., and Khan, R.A., 2009, J. Macromol. Sci. Part A Pure. Appl. Chem., 46, 6, 615–624.

[23] Jo, C., Kang, H., Lee, N.Y., Kwon, J.H., and Byun, M.W., 2005, Radiat. Phys. Chem., 72, 6, 745–750.

[24] Hara, M., Koshimizu, N., Yoshida, M., Hauq, I.J., Ulset, A.S., and Christensen, B.E., 2010, J. Biomater. Sci., Polym. Ed., 21, 6, 877–892.

[25] Bessho, M., Kojima, T., Okuda, T., and Hara, M., 2007, Bull. Chem. Soc. Jpn., 80, 5, 979–985.

[26] Dhandayuthapani, B., Yoshida, Y., Maekawa, T., and Kumar, D.S., 2011, Int. J. Polym. Sci., 2011, 1–19.

[27] Simon, A., Grohens, Y., Vandanjon, L., Bourseau, P., Balnois, E., and Levesque, G, 2003, Macromol. Symp., 203, 1, 331–338.

[28] Roussenova, M., Enrione, J., Diaz-Calderon, P., Taylor, A.J., Ubbink, J., and Alam, M.A., 2012, New J. Phys., 14, 3, 035016, 19 p.

[29] Menegalli, F.C., Sobral, P.J., Roques, M.A., and Laurent, S., 1999, Drying Technol., 17, 7-8, 1697–1706.

[30] Fraga, A.N., and Williams, R.J.J., 1985, Polymer, 26, 1, 113–118.

[31] Lee, M., Lee, S., and Song, K.B., 2005, Radiat. Phys. Chem., 72, 35–40.

[32] Xu, W.H., Liu, B.Y., Yang, H.S., Liu, K.L., Jia, S.X., and Chen, F.S., 2012, Afr. J. Biotechnol., 22, 28, 7239–7246.

[33] Machi, S., 1996, Radiat. Phys. Chem., 47, 3, 333–336.

[34] Lacroix, M., Le, T.C., Ouattara, B., Yu, H., Letendre, M., Sabato, S.F., Mateescu, M.A., and Patterson, G., 2002, Radiat. Phys. Chem., 63, 827–832.

[35] Ressouany, M.M., Vachon, C., and Lacroix, M., 1998, J. Agric. Food Chem., 46, 4, 1618–1623.

[36] Krajewski, A., Mazzocchi, M., Buldini, P.L., Ravaglioli, A., Tinti, A., Taddei, P., and Fragnano, C., 2005, J. Mol. Struct., 221, 744–747.

[37] Carvalho, R.A., Sobral, P.J.A., Thomazine, M., Habitante, A.M.Q.B., Giménez, B., Goméz-Guillén, M.C., and Montero, P., 2008, Food Hydrocolloids, 22, 6, 1117–1123.

[38] Goméz-Guillén, M.C., Pérez-Mateos, M., Goméz-Estaca, J., López-Caballero, E., Giménez, B., and Montero, P., 2009, Trends Food Sci. Technol., 20, 1, 3–16.

[39] Langmaier, F., Kolomazník, K., Sukop, S., and Mládek, M., 1999, J. Soc. Leather Technol. Chem., 83, 4, 187–195.

[40] Sobral, P.J.A., Habitante, A.M.Q.B., and Monterrey-Quintero, E.S., 2003, Braz. J. Food Technol., 6, 2, 327–331.

[41] Bigi, A., Panzavolta, S., and Rubini, K., 2004, Biomaterials, 25, 25, 5675–5680.

[42] Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., and Roveri, N., 2001, Biomaterials, 22, 8, 763–768.

[43] Yannas, I.V., 1972, J. Macromol. Sci., Polym. Rev., 7, 1, 49–106.

[44] Pinhas, M.F., Blanshard, J.M.V., Derbyshire, W., and Mitchell, J.R., 1996, J. Therm. Anal. Calorim., 47, 5, 1499–1511.

[45] Ngai, K.L., and Plazek, D.J., 2007, “Temperature Dependences of the Viscoelastic Response of Polymer Systems” in Physical Properties of Polymers Handbook, Eds. Mark, J.E., 2nd ed., Springer, New York, 455–478.

[46] Reutner, P., Luft, B., and Borchard, W., 1985, Colloid. Polym. Sci., 263, 519–529.

[47] Apostolov, A.A., Fakirov, S., Vassileva, E., Patil, R.D., and Mark, J.E., 1998, J. Appl. Polym. Sci., 71, 3, 465–470.

[48] Patil, R.D., Mark, J.E., Apostolov, A.A., Vassileva, E., and Fakirov, S., 2000, Eur. Polym. J., 36, 5, 1055–1061.

[49] Akin, H., and Hasirci, N., 1995, J. Appl. Polym. Sci., 58, 1, 95–100.

[50] Peña, C., de la Caba, K., Eceiza, A., Ruseckaite, R., and Mondragon, I., 2010, Bioresour. Technol., 101, 17, 6836–6842.

[51] de Carvalho, R.A., and Grosso, C.R.F., 2004, Food Hydrocolloids, 18, 5, 717–726.

[52] Kong, J., and Yu, S., 2007, Acta Biochim. Biophys. Sin., 39, 8, 549–559.

[53] Pelton, J.T., and McLean, L.R., 2000, Anal. Biochem., 277, 2, 167–176.

[54] Jacobsen, R.J., Brown, L.L., Hutson, T.B., Fink, D.J., and Veis, A., 1983, Science, 220, 4603, 1288–1290.

[55] Krimm, S., and Bandekar, J., 1986, Adv. Protein Chem., 38, 181–364.

[56] Susi, H., and Byler, D.M., 1986, Methods Enzymol., 130, 290–311.

[57] Surewicz, W.K., and Manstsch, H.H., 1988, Biochim. Biophys. Acta., 952, 2, 115–130.

[58] Kuijpers, A.J., Engbers, G.H.M., Feijen, J., de Demeester, J., Kriigsyeld, J., Zaat, S.A.J., and Dankert, J., 1999, Macromolecules, 32, 3325–333.



DOI: https://doi.org/10.22146/ijc.21322

Article Metrics

Abstract views : 3114 | views : 3009


Copyright (c) 2013 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.