POLYMERIC BIOMATERIALS FILM BASED ON POLY(VINYL ALCOHOL) AND FISH SCALE COLLAGEN BY REPETITIVE FREEZE-THAW CYCLES FOLLOWED BY GAMMA IRRADIATION

https://doi.org/10.22146/ijc.21280

Dian Pribadi Perkasa(1*), Erizal Erizal(2), Basril Abbas(3)

(1) Centre for the Application of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Pasar Jumat, Jakarta 12070
(2) Centre for the Application of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Pasar Jumat, Jakarta 12070
(3) Centre for the Application of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Pasar Jumat, Jakarta 12070
(*) Corresponding Author

Abstract


The polymeric biomaterial film based on poly(vinyl alcohol) (PVA) and fish collagen of Lates calcarifer scale were synthesized by three times freeze-thaw cycles followed by gamma irradiation at varied doses of 0, 10, 20, and 30 kGy respectively. Characteristic of PVA/collagen film as effect of constituting polymers and cross linking methods were investigated using Fourier Transform Infrared (FTIR) spectrophotometer, Differential Scanning Calorimetry (DSC), Universal Testing Machine (UTM), and Chroma Mater. Its gel fraction and swelling kinetic were determined by gravimetry. The result showed that IR spectra of controlled and irradiated film demonstrated characteristic vibration bands of both constituting materials. The DSC analysis revealed that gamma irradiation induced interaction between PVA and collagen at molecular level. Improvement of tensile properties by gamma irradiation was observed on tensile strength at 30 kGy with p < 0.05. Gamma irradiation also significantly (p < 0.05) increased yellowness of PVA/collagen film, reduced swelling kinetic, and increased gel fraction of films.

Keywords


polymeric biomaterial film; poly(vinyl alcohol); fish collagen; gamma irradiation

Full Text:

Full Text PDF


References

[1] Nair, S.N., and Laurencin, C.T., 2006, Adv. Biochem. Eng./Biotechnol., 102, 47–90.

[2] Mano, V., and Silva, M.E.S.R., 2007, Mater. Res., 10, 2, 165–170.

[3] Cascone, M.G., 1997, Polym. Int., 43, 1, 55‑69.

[4] Lin, H., Dan, W., and Dan, N., 2012, J. Appl. Polym. Sci., 123, 5, 2753–2761.

[5] Sionkowska, A., Wisniewski, M., Skopinska, J., and Mantovani, D., 2006, Int. J. Photoenergy, 2006, 1–6.

[6] Pietruscha, K., and Verne, S., 2009, World Congress on Medical Physics and Biomedical Engineering 2009, IFMBE Proceedings, 25, 10, 1–4.

[7] Schmedlen, R.H., Masters, K.S., and West, J.L., 2002, Biomaterials, 23, 22, 4325–4332.

[8] Lee, C.R., Grodzinsky, A.J., and Spector, M., 2001, Biomaterials, 22, 23, 3145–3154.

[9] Parenteau-Bareil, R., Gauvin, R., and Berthod, F., 2010, Materials, 3, 3, 1863–1887.

[10] Alexy, P., Bakoš, D., Hanzelová, S., Kukolíková, L., Kupec, J., Charvátová, K., Chiellini, E., and Cinelli, P., 2003, Polym. Test., 22, 7, 801–809.

[11] Sarti, B., and Scandola, M., 1995, Biomaterials, 16, 10, 785–792.

[12] Zhang, Q., Ren, L., and Liu, L., 1997, J. Mater. Sci. Technol., 13, 3, 179–183.

[13] Pérez-Mateos, M., Montero, P., and Gómez-Guillén, M.C., 2009, Food Hydrocolloids, 23, 1, 53–61.

[14] Park, K.R., and Nho, Y.C., 2003, J. Appl. Polym. Sci., 90, 6, 1477–1485.

[15] Yang, X., Zhu, Z., Liu, Q., Chen, X., and Ma, M., 2008, Radiat. Phys. Chem., 77, 8, 954–960.

[16] Maggi, L., Segale, L., Ochoa-Machiste, E., Faucitano, A., Buttafava, A., and Conte, U., 2004, Int. J. Pharm., 269, 2, 343–351.

[17] Andrade, G., Barbosa-Stancioli, E.F., Mansur, A.A.P., Vasconcelos, W.L., and Mansur, H.S., 2006, Biomed. Mater., 1, 4, 211–234.

[18] Mansur, H.S., Sadahira, C.M., Souza, A.N., and Mansur, A.A.P., 2008, Mater. Sci. Eng., C, 28, 4, 539–548.

[19] Kong, J., and Yu, S., 2007, Acta Biochim. Biophys. Sin., 39, 8, 549–559.

[20] Krimm, S., and Bandekar, J., 1986, Adv. Protein Chem., 38, 181–364.

[21] Sionkowska, A., Skopinska-Wisniewska, J., and Wisniewski, M., 2009, J. Mol. Liq., 145, 3, 135–138.

[22] Ciesla, K., Salmieri, S., Lacroix, M., and La Tien, C., 2004, Radiat. Phys. Chem., 71, 93–97.

[23] Bandekar, J., 1992, Biochim. Biophys. Acta, 1120, 123–143.

[24] Grant, R.A., Cox, R.W., and Kent, C.M., 1973, J. Anat., 115, 1, 29–43.

[25] Yang, X., Liu, Q., Chen, X., and Zhu, Z., 2008, J. Appl. Polym. Sci., 108, 2, 1365–1372.

[26] Pietruscha, K, 1990, Radiat. Phys. Chem., 36, 155–160.

[27] Von Sonntag, C., Bothe, E., Ulanski, P., and Deeble, D.J., 1995, Radiat. Phys. Chem., 46, 527–532.

[28] Cooper, A., Nutley, M.A., and Walood, A., in: S.E. Harding, and B.Z. Chowdhry Eds., Protein-ligand Interaction: Hydrodynamics and Calorimetry, Oxford University Press, Oxford, 2000, pp. 287–318.

[29] Gill, P., Moghadam, T.T., and Ranjbar, B., 2010, J. Biomol. Tech., 21, 4, 167–193.

[30] Shah, B., Kakumanu, V.K., and Bansal, A.K., 2006, J. Pharm. Sci., 95, 8, 1641–1665.

[31] Saleki-Gerhardt, A., Ahlneck, C., and Zografi, G., 1994, Int. J. Pharm., 101, 3, 237–247.

[32] Wilett, T.L., Labow, R.S., Aldous, I.G., Avery, N.C., and Lee, J.M., 2010, J. Biomech. Eng., 132, 3, 0310021–0310028.

[33] Dai, C.A., and Liu, M.W., 2006, Mater. Sci. Eng., A, 423, 121–127.

[34] Bozec, L., and Odlyha, M., 2011, Biophys. J., 101, 1, 228–236.

[35] Miles, C., and Bailey, A., 1999, Proc. Indian Acad. Sci., 111, 1, 71–80.

[36] Dawes, K., Glover, L.C, and Vroom, D.A., in J.E. Mark Eds., Physical Properties of Polymers Handbook, 2nd ed., Springer, New York, 2007, pp. 867–888.

[37] Pawde, S.M., Deshmukh, K., and Parab, S., 2008, J. Appl. Polym. Sci., 109, 2, 1328–1337.

[38] Verker, R., Atar, N., Quero, F., Eichhorn, S.J., and Grossman, E., 2013, Polym. Degrad. Stab., 98, 5, 997–1005.

[39] Peterlin, A., 1977, Polym. Eng. Sci., 17, 3, 183–193.

[40] Bowden, P.B., and Young, R.J., 1974, J. Mater. Sci., 9, 12, 2034–2051.

[41] Mitragoni, S., and Lahann, J., 2009, Nat. Mater., 8, 15–23.

[42] Kostić, A., Adnadjević, B., Popović, A., and Jovanović, J., 2007, J. Serb. Chem. Soc., 72, 11, 1139–1153.

[43] Aly, A.S., 1998, Angew. Makromol. Chem., 259, 1, 13–18.

[44] Tual, C., Espuche, E., Escoubes, M., Domard, A., 2000, J. Polym. Sci., Part B: Polym. Phys., 38, 11, 1521–1529.

[45] Mi, F-L., Kuan, C-Y., Shyu, S-S., Lee, S-T., and Chang, S-F., 2000, Carbohydr. Polym., 41, 4, 389–396.

[46] Jiang, H., Su, W., Brant, M., Tomlin, D., and Bunning, T.J., 1997, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 41, 718–719.



DOI: https://doi.org/10.22146/ijc.21280

Article Metrics

Abstract views : 2141 | views : 2687


Copyright (c) 2013 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.