Determination of the Temperature Effect on Glycerol Nitration Processes Using the HYSYS Predictions and the Laboratory Experiment

https://doi.org/10.22146/ijc.21268

Erna Astuti(1*), Supranto Supranto(2), Rochmadi Rochmadi(3), Agus Prasetya(4), Krister Ström(5), Bengt Andersson(6)

(1) Department of Chemical Engineering, Ahmad Dahlan University, Jl. Prof. Dr. Soepomo, SH, Janturan Umbulharjo Yogyakarta 55161
(2) Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika 2 Kampus UGM Yogyakarta 55281
(3) Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika 2 Kampus UGM Yogyakarta 55281
(4) Department of Chemical Engineering, Universitas Gadjah Mada, Jl. Grafika 2 Kampus UGM Yogyakarta 55281
(5) Department of Chemical and Biological Engineering, Chalmers University of Technology, Campus Johanneberg, SE-412 96 Gothenburg
(6) Department of Chemical and Biological Engineering, Chalmers University of Technology, Campus Johanneberg, SE-412 96 Gothenburg
(*) Corresponding Author

Abstract


Determinations of the temperature effect on glycerol nitration processes have been done with two methods: the HYSYS predictions and the laboratory experiment. The aim of this study was to compare prediction method and laboratory experiment method. The highest equilibrium conversion from HYSYS predictions was obtained in the range of equilibrium temperature of 10 to 20 °C. The laboratory experiments also described that nitration of glycerol with nitric acid should be carried out at reaction temperature of 10 to 20 °C. HYSYS that was used to predict the results of experiments in the laboratory can reduce the laboratory work with minimize the range of operating conditions studied. HYSYS exactly predict temperature of nitration of glycerol. The difference in conversion between two methods due to the equipment that was used in the experiments, procedure of experiments and the accuracy of analysis.

Keywords


nitration; glycerol; thermodynamic process; numerical prediction

Full Text:

Full Text PDF


References

[1] Atadashi, I.M., Aroua, M.K., Abdul_Aziz, A.R., and Sulaiman, N.M.N., 2013, J. Ind. Eng. Chem., 19 (1), 14–26.

[2] Leung, D.Y.C, Wu, X., and Leung, M.K.H., 2010, Appl. Energy, 87 (4), 1083-1095.

[3] Demirbas, A., 2005, Prog. Energy Combust. Sci., 31 (5-6), 466–487.

[4] Dubé, M.A. Tremblay, A.Y., and Liu, J., 2007, Bioresour. Technol., 98 (3), 639–647.

[5] Da Silva, R.B., Neto, A.F.L, dos Santos, L.S.S., de Oliveira_Lima, J.R., Chaves, M.H., dos Santos Jr., J.R., de Lima, G.M., de Moura, E.M., and de Moura, C.V.R., 2008, Bioresour. Technol., 99 (15), 6793–6798.

[6] Chongkhong, S., Tongurai, C., Chetpattananondh, P., and Bunyakan, C., 2007, Biomass Bioenergy, 31 (8), 563–568.

[7] Noiroj, K., Intarapong, P., Luengnaruemitchai, A., and Jai-In, S., 2009, Renew. Energy, 34 (4), 1145-1150.

[8] Pagliaro, M., and Rossi, M., 2008, The Future of Glycerol: New Usage of a Versatile Raw Material, RSC Publishing, Cambridge.

[9] Bonet, J., Costa, J., Sire, R., Reneaume, J.M., Plesu, E.A., Plesu, V., and Bozga, G., 2009, Food Bioprod. Process., 87 (3), 171–178.

[10] Galan, M.I., Bonet, J., Sire, R., Reneaume, J.M., and Plesu, A.E., 2009, Bioresour. Technol., 100 (15), 3775–3778.

[11] Kurosaka, T., Maruyama, H., Naribayashi, I., and Sasaki, Y., 2008, Catal. Commun., 9 (6), 1360–1363.

[12] Melero, J.A., Grieken, R.V., Morales G., and Paniagua, M., 2007, Energy Fuels, 21 (3), 1782–1791.

[13] Marris, E.P., Ketchie, W.C., Murayama, M., and Davis, R.J., 2007, J. Catal., 251 (2), 281–294.

[14] Dasari, M.A., Kiatsimkul, P., Sutterlin, W.P., and Suppes, G.J., 2005, Appl. Catal. A, 281 (1-2), 225–231.

[15] Highsmith, T.K., Sanderson, A.J., Cannizzo, L.F., and Hajik, R.M., 2002, US Patent 6.362.311.

[16] Sanderson, A.J., and Martins, L.J., 2004, US Patent 6.730.181.

[17] Highsmith, T.K, and Johnston, H.E., 2005, US Patent 6.870.061.

[18] Willer, R.L, and McGrath, D.K., 1997, US Patent 5.591.936.

[19] Willer R.L., Stern, A.G., and Day, R.S., 1995, US Patent 5.380.777

[20] Braithwaite, P.C., Lund, G.K., and Wardle, R.B., 1996, US Patent 5.587.553.

[21] Provatas, A., 2000, Energetic Polymers and Plasticisers for Explosive Formulations. A Review of Recent Advances, DSTO Aeronautical and Maritime Research Laboratory, Melbourne.

[22] Kazakov, A.I., Lagodzinskaya, G.V., Andrienku, L.P., Yunda, N.G., Korolev, A.M., Rubtsov, Y.I., Manelis, G.B., and Eremenko, L.T., 1990, Russ. Chem. Bull., 39 (8), 1560–1565.

[23] Kazakov, A.I., Kirpichev, E.P., Lagodzinskaya, G.V., Andrienku, L.P., Yunda, N.G., Korolev, A.M., Rubtsov, Y.I., Manelis, G.B., and Eremenko, L.T., 1990, Russ. Chem. Bull., 39 (8), 1565–1570.

[24] Yunda, N.G., Lagodzinskaya, G.V., Kazakov, A.I., Korolev, A.M., Rubtsov, Y.I., Manelis, G.B., and Eremenko, L.T., 1991, Russ. Chem. Bull., 40 (2), 325–332.

[25] Moore, W.J., 1998, Physical Chemistry, 5th ed., Longman Publishing Group, London.

[26] Atkins, P., and de Paula, J., 2010, Atkins’ Physical Chemistry, 9th ed., Oxford University Press, Oxford.

[27] Astuti, E., Supranto, Rochmadi, and Prasetya, A., 2012, “Analisis kuantitatif senyawa kimia1-MNG, 2-MNG, 1,3-DNG, 1,2-DNG dan NG produk reaksi nitrasi gliserol dengan metode gas chromatography”, in Chemistry and Chemistry Education Conference, Universitas Jendral Soedirman Purwokerto, Indonesia, 361–368.



DOI: https://doi.org/10.22146/ijc.21268

Article Metrics

Abstract views : 2064 | views : 1984


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.