Phosphonate Modified Silica for Adsorption of Co(II), Ni(II), Cu(II), and Zn(II)

https://doi.org/10.22146/ijc.21251

Dian Maruto Widjonarko(1*), Jumina Jumina(2), Indriana Kartini(3), Nuryono Nuryono(4)

(1) Department of Chemistry, Faculty of Mathematic and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A, Surakarta 57126 Central Java
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281
(*) Corresponding Author

Abstract


A new phosphonate modified silica (PMS) has been investigated for adsorption of Co(II), Ni(II), Cu(II), and Zn(II) in aqueous solution. The adsorbent was modified of silica by immobilizing aminoethyl dihydrogen phosphate (AEPH2) on 1,4-dibromobutane grafted silica. The physicochemical of the adsorbent was investigated using Fourier Transform Infra-red (FTIR) spectroscopy, X-ray Fluorescence (XRF), and N2 gas adsorption/desorption. The adsorption study was carried out in a batch system by mixing solution of metal ions at various pHs, contact times, and initial metal ion concentrations. The unadsorbed metals were determined by Flame Atomic Absorption Spectrophotometry (FAAS). Result of characterization showed that PMS has been successfully prepared. The product contained 45.99% (w/w) silica and 1.33% (w/w) phosphorous with surface area, pore volume, and pore size of 115.3 m2g-1; 0.7578 mLg-1; and 131.44 Å, respectively. Adsorption of metal ions on PMS occurred quite fast, less than 30 min. Modification of phosphonate on silica increased the adsorption capability, up to 8 times higher than that of unmodified silica, depending on metal ion type and pH solution. The capacity order of the metals adsorption was Cu(II)>Co(II)>Ni(II)>Zn(II). Based on the adsorption characteristic, the adsorbent is promising to be applied as a material for solid phase extraction of transition metal ions.

Keywords


modified silica; phosphonate; adsorption

Full Text:

Full Text Pdf


References

[1] WHO, 2003, Guidelines for Drinking-water Quality: Cu in Drinking Water, World Health Organization.

[2] WHO, 2006, Concise international chemical assessment document; 69, Cobalt and Inorganic Cobalt Compounds, World Health Organization.

[3] WHO, 2005, Guidelines for Drinking-water Quality: Nickel in Drinking Water, World Health Organization.

[4] WHO, 2003, Guidelines for Drinking-water Quality: Zink in Drinking Water, World Health Organization, Geneva.

[5] Sampaio, R.M., Timmers, R.A., Xu, Y., Keesman, K.J., and Lens, P.N., 2009, J. Hazard. Mater., 165 (1-3), 256–265.

[6] Pohl, P., and Prusisz, B., 2004, Anal. Chim. Acta, 502 (1), 83–90.

[7] Genç-Fuhrman, H., Wu, P., Zhou, Y., and Ledin, A., 2008, Desalination, 226 (1-3), 357–370.

[8] Ulewicz, M., Walkowiak, W., Gega, J., and Pośpiech, B., 2003, Ars Separatoria Acta, 2, 47–55.

[9] Sholkovits, E.R. and Copland, D., 1981, Geochim. Chosmochim. Acta, 45 (2), 181–189.

[10] Koutlemani, M.M, Mavros, P., Zouboulis, A.I., and Matis, K.A., 1994, Sep. Sci. Technol., 29 (7), 867–886.

[11] Krajewska, B., 2001, React. Funct. Polym., 47 (1), 37–47.

[12] Georgaka, A., and Spanos, N., 2010, Global NEST J., 12 (3), 239–247.

[13] Bhatnagar, A., and Minocha, A.K., 2006, Indian J. Chem. Technol., 13, 203–217.

[14] Yang, R.T, 2003, Adsorbents: Fundamentals and Applications, John Willey and Sons.

[15] Dash, S., Mishra, S., Patel, S., and Mishra, B.K., 2008, Adv. Colloid Interface Sci., 140 (2), 77–94.

[16] Foschiera, J.L., Pizzolato, T.M., and Benvenutti, E.V., 2001, J. Braz. Chem. Soc., 12 (2), 159–164.

[17] Bordelanne, O., and Dellvile, M-H., 2002, Solid State Sci., 4 (6), 851–858.

[18] Jal, P.K., Patel, S., and Mirsha, B.K., 2003, Talanta, 62 (5), 1005–1028.

[19] Arakaki, L.N.H., and Airoldi, C., 2000, Polyhedron, 19 (4), 367–373.

[20] Qu, R., Niu, Y., Sun, C., Ji, C., Wang, C., and Cheng, G., 2006, Microporous Mesoporous Mater., 97 (1), 58–65.

[21] Machado Jr., R.S.A., da Fonseca, M.G., Arakaki, L.N.H., Espinola, J.G.P., and Oliveira, S.F., 2004, Talanta, 63 (2), 317–322.

[22] Nesterenko, P.N., Zhukova, O.S., Shpigun, O.A., and Jones, P., 1998, Synthesis and Ion Exchange Properties, J. Chromatogr., A, 813 (1), 47–53.

[23] Nowack, B., 2003, Water Res., 37 (11), 2533–2546.

[24] Garcia-Valls, R., Hrdlicka, A., Perutka, J., Havel, J., Deorkar, N.V., Tavalides, L.L., Muñoz, M., and Valiente, M., 2001, Anal. Chim. Acta, 439 (2), 247–253.

[25] Mishra, S.P., Achary, P.G.R., and Das, M., 2012, J. Chem. Pharm. Res., 4 (2), 1207–1216.

[26] Shoaib, A., Badar, T., and Aslam, N., 2011, Pak. J. Bot., 43 (6), 2997–3000.

[27] Mutin, P.H., Guerrero, G., and Vioux, A., 2005, J. Mater. Chem., 15 (35-36), 3761–3768.

[28] Wijnen, P.W.J.G., Beelen, T.P.M., de Haan, J.W., Rummens, C.P.J., van de Ven, L.J.M, and van Santen R.A., 1989, J. Non-Cryst. Solids, 109 (1), 85–89.

[29] Mori, Y, and Pinnavaia, T.J., 2001, Chem. Mater., 13 (6), 2173–2178.

[30] Jabbour, J., Calas, S., Gatti, S., Kribich, R.K., Myara, M., Pille, G., Ettienne, P., and Moreau, Y., 2008, J. Non-Cryst. Solids, 354 (2-9), 651–658.

[31] Lisovskyy, I.P., Litovchenko, V.G., Mazunov, D.O., Kaschieva, S., Koprinarova, J., and Dmitriev, S.N., 2005, J. Optoelectron. Adv. Mater., 7 (1), 325–328.

[32] Dawy, M., 2002, Egypt. J. Sol., 25 (1), 137–152.

[33] Coates, J., 2000, Interpretation of Infrared Spectra, A practical Approach, Encyclopedia of Analytical Chemistry, Meyers ed., John Wiley & Sons Ltd, Chichester, 10815–10837.

[34] Basila, M.R., The Use of Infrared Spectroscopy to Study Surface Groups and Adsorbed Species on Catalysts, Gulf Research & Development Company, Pittsburgh, Pennsylvania, 203–209.

[35] Zhuravlev, L.T., 2000, Colloids Surf., A, 173 (1-3), 1–38.

[36] Plyasunova, N.V., Zhang, Y., and Muhammed, M., 1998, Hydrometallurgy, 48 (2), 153–189

[37] Mercê, A.L.R., Szpoganicz, B., Dutra, R.C., Khan, M.A., Thanh, X.D., and Bouet, G., 1998, J. Inorg. Biochem., 71 (1-2), 87–91.

[38] Schock, M.R., Lytle, D.A, and Clement, J.A., 1995, Effect of pH, DIC, Orthophosphate and Sulfate on Drinking Water Cuprosolvency, National Risk Management Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati Ohio.

[39] Weng, C-H., and Huang, C.P., 2004, Colloids Surf., A, 247 (1-3), 137–143.

[40] Shawabkeh, R., Al-Harahsheh, A., and Al-Otoom, A., 2004, Sep. Purif. Technol., 40 (3), 251–257.

[41] Say, R., Birlik, E., Ersöz, A., Yilmaz, F., and Gedikbey, T., 2003, Anal. Chim. Acta, 480:251-258

[42] Lee, B., Kim, Y., Lee, H., and Yi, J., 2001, Microporous Mesoporous Mater., 50, 77–90.

[43] Wang, H., Kang, J., Liu, H., and Qu, J., 2009, J. Environ. Sci., 21 (11), 1473–1479.

[44] Terrada, K., Matsumoto, K., and Kimora, H., 1983, Anal. Chim. Acta, 153, 237–247.

[45] Elbhiri, Z., Chevalier, Y., Chovelon, J-M., and Jeffrezic-Renault, N., 2000, Talanta, 52 (3), 495–507.



DOI: https://doi.org/10.22146/ijc.21251

Article Metrics

Abstract views : 847 | views : 857


Copyright (c) 2014 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.