Synthesis and Characterization of Oligomer 4-Vinylpyridine as A Corrosion Inhibitor for Mild Steel in CO2 Saturated Brine Solution

https://doi.org/10.22146/ijc.21164

Ilim Ilim(1*), Alan Jefferson(2), Wasinton Simanjuntak(3), Marc Jeannin(4), Yana Maolana Syah(5), Bunbun Bundjali(6), Buchari Buchari(7)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology – ITB, Jl. Ganesha No 10 Bandung, West Java Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lampung University, Jl. S. Brojonegoro No 1, Bandarlampung 35145
(2) Consultant of Polymer Products, Former staff of Western Australian Corrosion Research Group and Adjunct Assoc. Prof. of Curtin University of Technology, Kent St. Bentley WA.6102
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lampung University, Jl. S. Brojonegoro No 1, Bandarlampung 35145
(4) Laboratoire des Sciences de l’Ingénieur pour l’Environnement LaSIE – UMR CNRS 7536, University of La Rochelle Avenue Michel Crépeau, 17042 La Rochelle, Cedex 1
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology – ITB, Jl. Ganesha No 10 Bandung, West Java
(6) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology – ITB, Jl. Ganesha No 10 Bandung, West Java
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology – ITB, Jl. Ganesha No 10 Bandung, West Java
(*) Corresponding Author

Abstract


In this work, the oligomer of 4-vinylpyridine designated as O(4-VP) was synthesized by hydrogen peroxide initiated chain growth polymerization and characterized in terms of molecular weight and structure by matrix assisted laser desorption ionization time of flight mass spectroscopy (MALDI-TOF MS). The oligomer was tested as corrosion inhibitor of mild steel in brine solution saturated with carbon dioxide, with the main purpose to investigate the effect of inhibitor concentrations and temperatures on the inhibition activity defined in terms of corrosion rate and percent of protection. The inhibition tests were carried out using the methods of weight loss (WL) and linear polarization (LP). Characterization using MALDI-TOF MS revealed that the oligomer has the mass (m/z) in the range 200-2400, which corresponds to chain length of 2-22 repeating units. The results of corrosion rate measurements show that the corrosion rate with the use of oligomer is significantly lower than that without inhibitor, demonstrating that the oligomer functioned as effective corrosion inhibitor, while the 4-vinyl pyridine monomer was found to promote the corrosion. It was also found that the protection by the oligomer increased with increasing temperature and it was predicted the oligomer was chemically adsorbed by the surface of the metal.

Keywords


oligomer 4-vinylpyridine; corrosion inhibitor; CO2 corrosion; MALDI-TOF MS

Full Text:

Full Text PDF


References

[1] Jiang, X., Zheng, Y.G., Qu, D.R., and Ke, W., 2006, Corros. Sci., 48 (10), 3091–3108.

[2] Shayegani, M., Afshar, A., Ghorbani, M., and Rahmaniyan, M., 2008, Corros. Eng. Sci. Technol., 43 (4), 290–296.

[3] Nesić, S., 2011, “Carbon Dioxide Corrosion of Mild Steel” in Uhlig’s Corrosion Handbook, 3rd Ed., John Wiley & Sons, Inc., 229–245.

[4] Zhang, G., Chen, C., Lu, M., Chai, C., and Wu, Y., 2007, Mater. Chem. Phys., 105 (2-3), 331–340.

[5] Nesić, S., 2007, Corros. Sci., 49 (12), 4308–4338.

[6] Groysman, A., and Brodsky, N., 2006, Accred. Qual. Assur., 10, 537–542.

[7] Sasri, V.S., 2011, Green Corrosion Inhibitors: Theory and Practice, 1st Ed., John Wiley & Sons Inc., Canada, 310.

[8] Mazumder, M.A.J., Al-Muallem, H.A., Faiz, M., and Ali, S.A., 2014, Corros. Sci., 87, 187–198.

[9] Olivares, G.A., Gayosso, M.J.H., and Mendoza, J.L.M., 2007, Mater. Corros., 58 (6), 427–437.

[10] Desimone, M.P., Gordillo, G., and Simison, S.N., 2011, Corros. Sci., 53 (12), 4033–4043.

[11] Arthur, D.E., Jonathan, A., Ameh, P.O., and Anya, G., 2013, Int. J. Ind. Chem., 4, 1–9.

[12] Saliyan, V.R., and Adhikari, A.V., 2008, Bull. Mater. Sci., 31 (4), 699–711.

[13] Tiu, B.D.B., and Advincula, R.C., 2015, React. Funct. Polym., 95, 25–45.

[14] Al Juhaiman, L.A., Mustafa, A.A., and Mekhamer, W.K., 2012, Int. J. Electrochem. Sci., 7 (9), 8578–8596.

[15] Annand, R.R., Hurd, R.M., and Hackerman, N., 1965, J. Electrochem. Soc., 112 (2), 144–148.

[16] Khalifa, O.R., Hamid, I.A.A., Mochtar, S.M., and Kassab, A.A., 1993, Asian J. Chem., 5 (3), 749–754.

[17] El-Khair, B.M.A., Khalifa, O.R., Abdel-Hamid, I.A., and Azzam, A.M., 1987, Corros. Prev. Control, 34, 152.

[18] Chetouani, A., Medjahed, K., Al-Deyab, S.S., Hammouti, B., Warad, I., Mansri, A., and Aouniti, A., 2012, Int. J. Electrochem. Sci., 7 (7), 6025–6043.

[19] Abed, Y., Arrar, Z., Hammouti, B., Taleb, M., Kertit, S., and Mansri, A., 2001, Anti-Corros. Methods Mater., 48 (5), 304–308.

[20] Abed, Y., Hammouti, B., Touhami, F., Aouniti, A., Kertit, S., Elkacemi, K., and Mansri, A., 2001, Bull. Electrochem., 17, 105–110.

[21] Kricheldorf, H.R., 1992, Handbook of Polymer Synthesis, Marcel Dekker, New York.

[22] Scriven, E.F.V., Stout, J.R., Keay, J.G., and Murugan, R., 1995, US Patent Database IBM. America, Really Industries, Inc., Indianapolis.

[23] Frechet, J.M.J., and de Meftahi, M.V., 1984, Br. Polym. J., 16, 193–198.

[24] Farelas, F., and Ramirez, A., 2010, Int. J. Electrochem. Sci., 5 (6), 797–814.

[25] Galvan-Martinez, R., Mendoza-Flores, J., Duran-Romero, R., and Genesca, J., 2007, Mater. Corros., 58 (7), 514–521.

[26] Pérez, T., and Nava, J.L., 2013, Int. J. Electrochem. Sci., 8, 4690–4699.

[27] Rustandi, A., Adhika, N., Prima, T., and Aziz, N., 2013, Adv. Mater. Res., 789, 476–483.

[28] Hillenkamp, F., Wäfler, E., Jecklin, M.C., and Zenobi, R., 2009, Int. J. Mass Spectrom., 285 (3), 114–119.

[29] Chendo, C., Rollet, M., Phan, T.N.T., Viel, S., Gigmes, D., and Charles, L., 2015, Int. J. Mass Spectrom., 376, 90–96.

[30] Tanaka, K., Tsugawa, N., Kim, Y.O., Sanuki, N., Takeda, U., and Lee, L.J., 2009, Biochem. Biophys. Res. Commun., 379 (1), 110–114.

[31] Sato, H., Nakamura, S., Teramoto, K., and Sato, T., 2014, J. Am. Soc. Mass. Spectrom., 25 (8), 1346–1355.

[32] Liu, Q.Y., Mao, L.J., and Zhou, S.W., 2014, Corros. Sci., 84, 165–171.

[33] Zhang, Y., Pang, X., Qu, S., Li, X., and Gao, K., 2012, Corros. Sci., 59, 186–197.

[34] Farelas, F., Galicia, M., Brown, B., Nesic, S., and Castaneda, H., 2010, Corros. Sci., 52 (2), 509–517.

[35] León, L.D.L., Rodriguez, M.A.V., Cruz, V.E.R., Garcia, S.A.P., and León, A.L.L., 2011, Int. J. Electrochem. Sci., 6, 5134–5145.

[36] Eliyan, F.F., and Alfantazi, A., 2014, Corrosion, 70 (9), 880–898.

[37] Pandarinathan, V., Lepková, K., and van Bronswijk, W., 2014, Corros. Sci., 85, 26–32.

[38] Eliyan, F.F., and Alfantazi, A., 2014, Corros. Sci., 85, 380–393.



DOI: https://doi.org/10.22146/ijc.21164

Article Metrics

Abstract views : 2113 | views : 2576


Copyright (c) 2016 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.