Synthesis of ZnO Nanoparticles by Precipitation Method with Their Antibacterial Effect

https://doi.org/10.22146/ijc.21153

Muhammad Fajri Romadhan(1), Nurgaha Edhi Suyatma(2*), Fahim Muchammad Taqi(3)

(1) Department of Food Science and Technology, Bogor Agricultural University, Bogor 16680
(2) Department of Food Science and Technology, Bogor Agricultural University, Bogor 16680; Southeast Asian Food and Agricultural Science and Technology Center (SEAFAST Center), Bogor Agricultural University, Bogor 16680
(3) Department of Food Science and Technology, Bogor Agricultural University, Bogor 16680
(*) Corresponding Author

Abstract


The aim of this study was to synthesize and characterize Zinc oxide nanoparticles (ZnO-NPs) prepared by precipitation method. Zinc nitrate and sodium hydroxide was used as starting materials with biopolymer pectin as capping agent. ZnO-NPs were synthesized at three levels of temperatures (60, 80 and 100 °C) without or with calcinations (500 °C). Particle size analyzer (PSA) analysis results showed that the samples without calcination (T60, T80 and T100) having an average particle size respectively 105.13, 78.53, and 76.43 nm, whereas at the samples by calcination (T60C, T80C and T100C) each have average particle size of 88.73, 44.30 and 543.77 nm. The results showed that preparation of ZnO-NPs by using heating at 80 °C followed with calcinations at 500 °C (T80C) produced the smallest size. T80C samples further were analyzed using XRD, SEM and the antimicrobial activity compared with the ZnO-NPs commercials. XRD analysis confirmed that ZnO-NPs were successfully obtained and have form of pure nanostructure. SEM analysis showed that ZnO-NPs obtained has a spherical shape. Furthermore, this ZnO-NPs (T80C) has a better antimicrobial activity compared than commercial ZnO-NPs in market.

Keywords


synthesis of nanoparticles; calcination; ZnO nanoparticles; antimicrobial

Full Text:

Full Text PDF


References

[1] Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., 2011, J. Agric. Food. Chem., 59 (8), 3485–3498.

[2] Díaz, M.R., and Vivas-Mejia, P.E., 2013, Pharmaceuticals, 6 (11), 1361–1380.

[3] AbdElhady, M.M., 2012, Int. J. Carbohydr. Chem., 2012, 1–6.

[4] Li, X., Xing, Y., Jiang, Y., Ding, Y., and Li, W., 2009, Int. J. Food. Sci. Technol., 44, 2161–2168.

[5] Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., and Watkins, R., 2008, Food Addit. Contam., 25 (3), 241–258.

[6] Wei, H., Sun, H., Wang, S., Chen, G., Hou, Y., Guo, H., and Ma, X., 2010, J. Nat. Gas Chem., 19 (4), 393–396.

[7] Sabir, S., Arshad, M., and Chaudhari, S.K., 2014, Sci. World J., 2014, 1–8.

[8] Rasmussen, J.W., Martinez, E., Louka, P., and Wingett, D.G., 2010, Expert Opin. Drug Deliv., 7 (9),1063–1077.

[9] Jin, T., Sun, D., Su, J.Y., Zhang, H., and Sue, H.J. 2009, J. Food Sci., 74 (1), M46–M52.

[10] Jones, N., Ray, B., Ranjit, K.T., and Manna, A.C., 2007, FEMS Microbiol. Lett., 279 (1), 71–76.

[11] Arabi, F., Imandar, M., Negahdary, M., Imandar, M., Noughabi, M.T., Akbari-dastjerdi, H., and Fazilati, M., 2012, Annals Biol. Res., 3 (7), 3679–3685.

[12] Padmavathy, N., and Vijayaraghavan, R., 2008, Sci. Technol. Adv. Mater., 9 (3), 035004–035010.

[13] Ravichandran, S., Franklin, D.R., and Kalyan, U., 2010, Natl. J. ChemBiosis, 1 (2), 4–6.

[14] Manzoor, U., Zahra, F.T., Rafique, S., Moin, M.T., and Mujahid, M., 2015, J. Nanomater., 2015, 1–6.

[15] Parra, M.R., and Haque, F.Z., 2014, J. Mater. Res. Technol., 3 (4), 363–369.

[16] Suganthi, K.S., and Rajan, K.S., 2012, Asian J. Sci. Res., 5 (4), 207–217.

[17] Moharekar, S., Raskar, P., Wani, A., and Moharekar, S., 2014, World J. Pharm. Pharm. Sci., 3 (7), 1255–1267.

[18] Šileikaitė, A., Prosyčevas, I., Puišo, J., Juraitis, A., and Guobienė, A., 2006, Mater. Sci., 12 (4), 287–291.

[19] Alwan, R.M., Kadhim, Q.A., Sahan, K.M., Ali, R.A., Mahdi, R.J., Kassim, N.A., and Jassim, A.N., 2015, Nanosci. Nanotechnol., 5 (1), 1–6.

[20] Narayanan, P.M., Wilson, W.S., Abraham, A.T., and Sevanan, M., 2012, BioNanoSci., 2, 329–335.

[21] Jung W.K., Koo, H.C., Kim, K.W., Shin, S., Kim, S.H., and Park, Y.H., 2008, Appl. Environ. Microbiol., 74 (7), 2172–2178.

[22] Tullio, V., Nostro, A., Mandras, N., Dugo, P., Banche, G., Cannatelli, M.A., Cuffini, A.M., Alonzo, V., and Carlone, N.A., 2007, J. Appl. Microbiol., 102 (6), 1544–1550.

[23] Kumar, S.S., Venkateswarlu, P., Rao, V.R., and Rao, G.N., 2013, Int. Nano Lett., 3 (1), 1–6.

[24] Alias, S.S., Ismail, A.B., and Mohamad, A.A., 2010, J. Alloys Compd., 499 (2), 231–237.

[25] Kołodziejczak-Radzimska, A., and Jesionowski, T., 2014, Materials, 7 (4), 2833–2881.

[26] Babaei, Z., Jahanshahi, M., and Sanati, M.H., 2008, Int. J. Nanosci. Nanotechnol., 4 (1), 23–30.

[27] Downs, R.T., and Hall-Wallace, M., 2003, Am. Mineral., 88, 247–250.

[28] Nejati, K., Zolfaghar Rezvani, Z., and Pakizevand, R., 2011, Int. Nano Lett., 1, 75–81.

[29] Wang, Y., Li J., and Hong, R., 2012, J. Cent. South. Univ., 19 (4), 863–868.

[30] Yousef, J.M., and Danial, E.N., 2012, J. Health Sci., 2 (4), 38–42.

[31] Talebian, N., Amininezhad, S.M., and Doudi, M., 2013, J. Photochem. Photobiol., B, 120, 66–73.

[32] Ram, A.F.J., Arentshorst, M., Damveld, R.A., vanKuyk, P.A., Klis, F.M., and van den Hondel, C.A.M.J.J., 2004, Microbiology, 150, 3315–3326.



DOI: https://doi.org/10.22146/ijc.21153

Article Metrics

Abstract views : 11095 | views : 10061


Copyright (c) 2016 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.