Evaluation of Lagergren Kinetics Equation by Using Novel Kinetics Expression of Sorption of Zn2+ onto Horse Dung Humic Acid (HD-HA)

https://doi.org/10.22146/ijc.21151

Bambang Rusdiarso(1*), Rahmat Basuki(2), Sri Juari Santosa(3)

(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21, Yogyakarta 55281
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21, Yogyakarta 55281
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara PO BOX BLS 21, Yogyakarta 55281
(*) Corresponding Author

Abstract


Extraction and purification of humic acid from dry horse dung powder (HD-HA) was performed successfully and the purified HD-HA was then applied as sorbent to adsorb Zn2+. Extraction and purification were performed based on procedure of Stevenson (1994) under atmospheric air. Parameters investigated in this work consist of effect of medium sorption acidity, sorption rate (ka) and desorption rate constant (kd), Langmuir (monolayer) and Freundlich (multilayer) sorption capacities, and energy (E) of sorption. The ka and kd were determined according to the kinetic model of second order sorption reaching equilibrium, monolayer sorption capacity (b) and energy (E) were determined according to Langmuir isotherm model, and multilayer sorption capacity (B) was determined based on Freundlich isotherm model. Sorption of Zn2+ on purified HD-HA was maximum at pH 5.0. The novel kinetic expression resulted from proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the equation revealed that the intercept of Lagergren equation, ln qe was more complex function of initial concentration of Zn2+ (a), Langmuir sorption capacity (b), and sorbed Zn2+ at equilibrium (xe).

Keywords


Lagergren kinetics equation; novel kinetics expression; sorption; Zn2+; horse dung humic acid (HD-HA)

Full Text:

Full Text Pdf


References

[1] Manahan, S.E., 2000, Environmental Chemistry, 7th ed., Lewis Publisher, Boca Raton.

[2] Son, D.J., Kim, W.Y., Yun, C.Y., Chang, D., Kim, D.G., Chang, S.O., Kim, J.H., Sunwoo, Y., Bae, Y.S., and Hong, K.H., 2014, Int. J. Electrochem. Sci., 9 (8), 4548–4557.

[3] Kulkarni, S.J., and Goswami, A.K., 2014, IJESRT, 3 (9), 446–450.

[4] Amalle, P., Kulkarni, S., and Kulkarni, K., 2014, IJEEME, 1 (9), 1–4.

[5] Amalle, P., Kulkarni, S., and Kulkarni, K., 2014, IJESIT, 3 (5), 268–272.

[6] Stoller, M., Sacco, O., Sannino, D., and Chianese, A., 2013, Membranes, 3 (3), 126-135.

[7] Mahvi, A.H., and Bazrafshan, E., 2007, World App. Sci. J., 2 (1), 34–39.

[8] Qdais, H.A., and Moussa, H., 2004, Desalination, 164 (2), 105–110.

[9] Denizli, A., Say, R., and Arica, Y., 2000, Sep. Purif. Technol., 21 (1-2), 181–190.

[10] Gering, K.L., and Scamehorn, J.F., 1988, Sep. Sci. Technol., 23 (14-15), 2231–2267.

[11] Kulkarni, S.J., and Kaware, J.P., 2013, IJESIT, 2 (4), 465–469.

[12] Visa, M., and Duta, A., 2008, Scientific Study and Research, 9 (1), 73–82.

[13] Boparai, H.K., Joseph, M., and O’Carroll, D.M., 2010, J. Hazard. Mater., 186 (1), 458–465.

[14] Maleki, A., Mahvi, A.H., Zazouli, M.A., Izanloo, H., and Barati, A.H., 2011, Asian J. Chem., 23 (3), 1373–1376.

[15] Yavuz, Ö., Guzel, R., Aydin, F., Tegin, I., and Ziyadanogullari, R., 2007, Pol. J. Environ. Stud., 16 (3), 467–471.

[16] Malakootian, M., Nouri, J., and Hossaini, H., 2009, Int. J. Environ. Sci. Technol., 6 (2), 183–190.

[17] Mousavi, H.Z., and Seyedi, S.R., 2011, Int. J. Environ. Sci. Technol., 8 (1), 195–202.

[18] Mockaitis, G., Rodrigues, J.A.D., Foresti, E., and Zaiat, M., 2012, J. Environ. Manage., 106, 75–84.

[19] López-Pérez, P.A., Neria-González, M.I., Flores-Cotera, L.B., and Aguilar-López R., 2013, Int. J. Environ. Res., 7 (2), 501–512.

[20] Leyva-Ramos, R., Rangel-Mendez, J.R., Mendoza-Barron, J., Fuentes-Rubio, L., and Guerrero-Coronado, R.M., 1997, Water Sci. Technol., 35 (7), 205–211.

[21] Pourret, O., Davranche, M., Gruau, G., and Dia, A., 2007, Chem. Geol., 243 (1-2), 128–141.

[22] Bradl, H.B., 2004, J. Colloid Interface Sci., 277 (1), 1–18.

[23] Santosa, S.J., Siswanta, D., Sudiono, S., and Utarianingrum, R., 2008, Appl. Surf. Sci., 254 (23), 7846–7850.

[24] Santosa, S.J., Siswanta, D., Sudiono, S., and Sehol, M., 2007, Surf. Sci., 601 (22), 5148–5154.

[25] Santosa, S.J., Siswanta, D., Kurniawan, A., and Rahmanto, W.H., 2007, Surf. Sci., 601 (22), 5155–5161.

[26] Rahmawati, A., and Santosa, S. J., 2012, Alchemy, 2 (1), 46–57.

[27] Dwipurwani, O., Maiyanti, S.I., Bangun, P.B.J., Zuhair, Samat, and Lesbani, A., 2012, JPS, 15 (1), 22–25.

[28] Hooijer, A., Silvius, M., Wösten, H., and Page, S., 2006, Delft Hydraulics Report, Q3943.

[29] Barot, N.S., and Bagla, H.K., 2009, Green Chem. Lett. Rev., 2 (4), 217–221.

[30] Rupiasih, N.N., and Vidyasagar, P.B., 2009, Int. J. Des. Nat. Ecodyn., 4 (1), 32–41.

[31] Li, X., Xing, M., Yang, J., and Huang, Z., 2011, J. Hazard. Mater., 185 (2-3), 740–748.

[32] Aiken G.R., Mcknight, D.M., and Wershaw, R.L., 1985, Humic Substance in Soil, Sediment, and Water, John Willey & Sons, New York.

[33] Lagergren, S., 1898, K. Sven. Vetensk. Akad. Handl., 24 (4), 1–39.

[34] Tseng, R.L., Wu, F.C., and Juang, R.S., 2010, J. Taiwan Inst. Chem. Eng., 41 (6), 661–669.

[35] Ho, Y.S., 2004, Scientometrics, 59 (1), 171–177.

[36] Foo, K.Y., and Hameed, B.H., 2010, Chem. Eng. J., 156 (1), 2–10.

[37] Santosa, S.J., 2014, CLEAN-Soil Air Water, 42 (6), 760–766.

[38] Aharoni, C., and Sparks, D.L., “Kinetics of Soil Chemical Reactions—A Theoretical Treatment” in Rates of Soil Chemical Processes, Sparks, D.L., and Suarez, D.L., ed., Soil Science Society of America, 1991, 1–18.

[39] Stevenson, F.J., 1994, Humus Chemistry: Genesis, Composition, Reaction, 2nd ed., John Wiley & Sons, New York.

[40] Salwer, C.N., McCarty, P.L., and Parkin, G.F., 1994, Chemistry for Environmental Engineering, 4th ed., McGraw-Hill Inc., New York.

[41] Agarwal, S.P., Anwer, M.D.K., Khanna, R., Ali, A., and Sultana, Y., 2010, J. Serb. Chem. Soc., 75 (3), 413–422.

[42] Domeizel, M., Khalil, A., and Prudent, P., 2004, Bioresour. Technol., 94 (2), 177–184.

[43] Gieguzynska, E., Kocmit, A., and Gołezbiewska, D., 1998, Studies on humic acids in eroded soils of Western Pomerania. 1. Differentiation of some chemical as well as optical properties of humic acids along the eroded slope, Zaujec, A., Bielek, P., and Gonet, S.S., Eds., Slovak Agricultural University: Nitra, Slovakia.

[44] Albrecht, R., Le Petit, J., Terrom, G., and Périssol, C., 2011, Bioresour. Technol., 102 (6), 4495–4500.

[45] Zbytniewski, R., and Buszewski, B., 2005, Bioresour. Technol., 96 (4), 471–478.

[46] El-Hajjouji, H., Fakharedine, N., Ait-Baddi, G., Winterton, P., Bailly, J.R., Revel, J.C., and Hafidi, M., 2007, Bioresour. Technol., 98 (18), 3513–3520.

[47] Atkins, P.W., 1990, Physical Chemistry, 4th ed., Oxford University Press, Oxford.

[48] Joo, J., Chow, B.Y., Prakash, M., Boyden, E.S., and Jacobson, J.M., 2011, Nat. Matter, 10 (8), 596–601.



DOI: https://doi.org/10.22146/ijc.21151

Article Metrics

Abstract views : 473 | views : 416


Copyright (c) 2016 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemisty (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.