Cyclic Acetalization of Furfural on Porous Aluminosilicate Acid Catalysts

Hartati Hartati(1), Didik Prasetyoko(2*), Mardi Santoso(3)

(1) Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Surabaya, 60115
(2) Laboratory of Material Chemistry and Energy, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology (ITS), Kampus ITS Sukolilo, Surabaya 60111
(3) Laboratory of Natural Products and Chemical Synthesis, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology (ITS), Kampus ITS Sukolilo, Surabaya 60111
(*) Corresponding Author


Porous aluminosilicate materials included microporous and mesoporous ZSM-5, hierarchical aluminosilicates, and mesoporous aluminosilicate were tested for acetalization of furfural (furan-2-carbaldehyde) with propylene glycol. The existing synthesis methods for aluminosilicate and ZSM-5 were modified to produce aluminosilicate material with hierarchical porous structure. Catalytic activity in acetalization of furfural by propylene glycol were conducted by refluxed of the mixture of furfural, propylene glycol and catalyst, using toluene as solvent and nitrobenzene as internal standard, at 106 °C for 4 h. The result showed that a combination of two structure directing agents, tetrapropylammonium hydroxide (TPAOH) and cetyltrimethylammonium bromide (CTAB) and modification of catalytic crystallization produced an active aluminosilicate framework that provides a wide access for a bulky reactants and strong acid sites to catalyze the reaction. The pore structure and the strength of the Brønsted acid sites were crucial for the high conversion of furfural to produce a cyclic acetal.


acetalization; furfural; propylene glycol; porous aluminosilicates

Full Text:

Full Text Pdf


[1] Rubio-Caballero, J.M., Saravanamurugan, S., Maireles-Torres, P., and Riisager, A., 2014, Catal. Today, 234, 233–236.

[2] Climent, M.J., Corma, A., and Velty A., 2004, Appl. Catal., A, 263 (2), 155–161.

[3] Venkatachalam, K., Palanichamy, M., and Murugesan, V., 2010, Catal. Commun., 12 (4), 299–303.

[4] Rowe, D.J., 2005, “Aroma Chemicals I: C, H, O Compounds” in Chemistry and Technology of Flavors and Fragrances, Blackwell Publishing Ltd., Victoria, 72–73.

[5] Zviely, M., 2005, “Aroma Chemicals II: Heterocycles” in Chemistry and Technology of Flavors and Fragrances, Blackwell Publishing Ltd., Victoria, 88–90.

[6] Jermy, B.R., and Pandurangan, A., 2006, J. Mol. Catal. A: Chem., 256 (1-2), 184–192.

[7] Umbarkar, S.B., Kotbagi, T.V, Biradar, A.V., Pasricha, R., Chanale, J., Dongare, M.K., Mamede, A.S., Lancelot, C., and Payen, E., 2009, J. Mol. Catal. A: Chem., 310, 150–158.

[8] Khayoon, M.S., Abbas, A., Hameed, B.H., Triwahyono, S., Jalil, A.A., Haris, A.T., and Minett, A.I., 2014, Catal. Lett., 144 (6), 1009–1015.

[9] Pawar, R.R. Jadhav, S.V., and Bajaj, C.H., 2014, Chem. Eng. J., 235, 61–66.

[10] Bruckner, R., 2010, Organic Mechanisms Reactions, Stereochemistry and Synthesis, Springer-Verlag, Berlin Heidelberg, 373.

[11] Sheldon, R., Arends, I.W.C.E., and Hanefeld, U., 2007, Green Chemistry and Catalysis, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 10.

[12] Sharma, S.K., and Mudhoo, A., 2011, Green Chemistry for Environmental Sustainability, NRC Press, Tailor and Francis Group, New York, 2.

[13] Rodriguez, I., Climent, M.J., Iborra, S., Fornés, V., and Corma, A., 2000, J. Catal., 192 (2), 441–447.

[14] Liang, X.Z., Gao, S, Wang, W.J., Chen, W.P., and Yang, J.G., 2007, Chin. Sci. Bull., 52 (13), 1780–1784.

[15] Ajaikumar, S., and Pandurangan, A., 2008, J. Mol. Catal. A: Chem., 290 (1-2), 35–43.

[16] Emeis, C.A., 1993, J. Catal., 141 (2), 347–354.

[17] Cheng, Y., Wang, L.J., Li, J.S., Yang, Y.C., and Sun, X.Y., 2005, Mater. Lett., 59 (27), 3427–3430.

[18] Gonçalves, M.L., Dimitrov, L.D., Jordão, M.H., Wallau, M., and Urquieta-González, E.A., 2008, Catal. Today, 133-135, 69–79.

[19] Eimer, G.A., Díaz, I., Sastre, E., Casuscelli, S.G., Crivello, M.E., Herrero, E.R., and Perez-Pariente, J., 2008, Appl. Catal., A, 343 (1-2), 77–86.

[20] Hartati, Prasetyoko, D., Santoso, M., Bahruji, H., and Triwahyono, S., 2014, Jurnal Teknologi, 69 (5), 2180–3722.

[21] Tayade, K.N., Mishra, M., Munusamy, K., and Somani, R.S., 2014, J. Mol. Catal. A: Chem., 390, 91–96.

[22] Meenakshi, S., Sahu, A.K., Bhat, S.D., Sridhar, P., Pitchumani, S., and Shukla, A.K., 2013, Electrochim. Acta, 89, 35–44.

[23] Yang, J., Yu, S., Hu, H., Zhang, Y., Lu, J., Wang, J., and Yin, D., 2011, Chem. Eng. J., 166 (3), 1083–1089.

[24] Zhou, J., Hua, Z., Liu, Z., Wu, W., Zhu, Y., and Shi, J., 2011, ACS Catal., 1, 287–291.

[25] Thommes, M., 2010, Chem. Ing. Tech., 82 (7), 1059–1073.

[26] Jin, F., and Li, Y., 2009, Catal. Today, 145 (1-2), 101–107.

[27] Hensen, E.J.M., Poduval, D.G., Degirmenci, V., Ligthart, D.A.J.M., Chen, W., Maugé, F., Rigutto, M.S., and van Veen, J.A.R., 2012, J. Phys. Chem. C, 116, 21416−21429.


Article Metrics

Abstract views : 2646 | views : 2814

Copyright (c) 2016 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Indonesian Journal of Chemistry (ISSN 1411-9420 / 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Analytics View The Statistics of Indones. J. Chem.