Biodecolorization and Biodegradation of Methylene Blue Dye by Gloeophyllum trabeum and Fenton-Like Reaction
Adi Setyo Purnomo(1*), Hamdan Dwi Rizqi(2), Wahyu Adhy Kuncoro(3), Alya Awinatul Rohmah(4), Yuji Tsutsumi(5)
(1) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(2) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(3) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(4) Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
(5) Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Bazan-Wozniak, A., Nosal-Wiercińska, A., Yilmaz, S., and Pietrzak, R., 2024, Chitin-based porous carbons from Hermetia illucens fly with large surface area for efficient adsorption of methylene blue; adsorption mechanism, kinetics and equilibrium studies, Measurement, 226, 114129.
[2] Bai, Y.N., Wang, X.N., Zhang, F., Wu, J., Zhang, W., Lu, Y.Z., Fu, L., Lau, T.C., and Zeng, R.J., 2020, High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor, J. Hazard. Mater., 388, 121753.
[3] Kusuma, H.S., Christa Jaya, D.E., Illiyanasafa, N., Ikawati, K.L., Kurniasari, E., Darmokoesoemo, H., and Amenaghawon, A.N., 2024, A critical review and bibliometric analysis of methylene blue adsorption using leaves, Chemosphere, 356, 141867.
[4] Natrayan, L., Niveditha, V.R., Nadh, V.S., Srinivas, C., Dhanraj, J.A., and Saravanan, A., 2024, Application of response surface and artificial neural network optimization approaches for exploring methylene blue adsorption using luffa fiber treated with sodium chlorite, J. Water Process Eng., 58, 104778.
[5] Chen, M., Ding, L., Zhu, S., Xiong, X., Yuan, X., Peng, Y., Yang, L., Shi, H., Shao, P., and Luo, X., 2023, Decomplexation of Ni-EDTA enhanced by Fe(III) reduction in the Fenton reaction: Insight into the role of carbonyl groups, J. Environ. Chem. Eng., 11 (5), 111097.
[6] Rebekah, A., Maddipatla, R., Loka, C., Sahoo, S., and Lee, K.S., 2024, Engineering effective separation of photo-assisted charge carriers by provoking Fenton-like reaction for degradation of rhodamine B dye, Appl. Surf. Sci. Adv., 19, 100576.
[7] Srinivasan, R., 2023, A sustainable and cyclic metal organic framework-driven Fenton process for efficient removal of methylene blue, Inorg. Chem. Commun., 156, 111209.
[8] Wang, Y., Yan, F., Wu, J., Huang, Z., Song, L., and Yuan, S., 2024, Full utilization of Cu single atoms on carbon nitride nanofibers for enhanced Fenton-like degradation of methylene blue, Colloids Surf., A, 680, 132708.
[9] Purnomo, A.S., Asranudin, A., Rachmawati, N., Rizqi, H.D., Nawfa, R., and Putra, S.R., 2022, Role of Fe2+-dependent reaction in biodecolorization of methyl orange by brown-rot fungus Fomitopsis pinicola, HAYATI J. Biosci., 29 (2), 146–154.
[10] Belt, T., Altgen, M., Awais, M., Nopens, M., and Rautkari, L., 2024, Degradation by brown rot fungi increases the hygroscopicity of heat-treated wood, Int. Biodeterior. Biodegrad., 186, 105690.
[11] Jensen, K.A., Houtman, C.J., Ryan, Z.C., and Hammel, K.E., 2001, Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum, Appl. Environ. Microbiol., 67 (6), 2705–2711.
[12] Lyngsie, G., Krumina, L., Tunlid, A., and Persson, P., 2018, Generation of hydroxyl radicals from reactions between a dimethoxyhydroquinone and iron oxide nanoparticles, Sci. Rep., 8 (1), 10834.
[13] Shen, J.H., Horng, J.J., Wang, Y.S., and Zeng, Y.R., 2017, The use of reactive index of hydroxyl radicals to investigate the degradation of acid orange 7 by Fenton process, Chemosphere, 182, 364–372.
[14] Purnomo, A.S., Rohmah, A.A., Ekowati, W.S., Rizqi, H.D., and Asranudin, A., 2023, Involvement of Fenton reaction on biodecolorization and biodegradation of methylene blue dye by brown rot fungi Daedalea dickinsii, Indones. J. Chem., 23 (6), 1490–1499.
[15] Purnomo, A.S., Andyani, N.E.A., Nawfa, R., and Putra, S.R., 2020, Fenton reaction involvement on methyl orange biodegradation by brown-rot fungus Gloeophyllum trabeum, AIP Conf. Proc., 2237 (1), 020002.
[16] Chen, S., Zhu, M., Guo, X., Yang, B., and Zhuo, R., 2023, Coupling of Fenton reaction and white rot fungi for the degradation of organic pollutants, Ecotoxicol. Environ. Saf., 254, 114697.
[17] Setyo, P.A., Dwi, R.H., Sri, F., Sulistyo, P.H., and Ichiro, K., 2018, Effects of bacterium Ralstonia pickettii addition on DDT biodegradation by Daedalea dickinsii, Res. J. Chem. Environ., 22 (2), 151–156.
[18] Kirk, T.K., Schultz, E., Connors, W.J., Lorenz, L.F., and Zeikus, J.G., 1978, Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium, Arch. Microbiol., 117 (3), 277–285.
[19] Wahyuni S., Suhartono, M.T., Khaeruni, A., Purnomo, A.S., Asranudin, A., Holilah, H., and Riupassa, P.A., 2016, Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production, Asian J. Chem., 28 (12), 2731–2736.
[20] Wahyuni, S., Khaeruni, A., Purnomo, A.S., Asranudin, A., Holilah, H., and Fatahu, F., 2017, Characterization of mannanase isolated from corncob waste bacteria, Asian J. Chem., 29 (5), 1119–1124.
[21] Purnomo, A.S., and Mawaddah, M.O., 2020, Biodecolorization of methyl orange by mixed cultures of brown-rot fungus Daedalea dickinsii and bacterium Pseudomonas aeruginosa, Biodiversitas, 21 (5), 2297–2302.
[22] Qi, W., and Jellison, J., 2004, Induction and catalytic properties of an intracellular NADH-dependent 1,4-benzoquinone reductase from the brown-rot basidiomycete Gloeophyllum trabeum, Int. Biodeterior. Biodegrad., 54 (1), 53–60.
[23] Singh, A., Lasek-Nesselquist, E., Chaturvedi, V., and Chaturvedi, S., 2018, Trichoderma polysporum selectively inhibits white-nose syndrome fungal pathogen Pseudogymnoascus destructans amidst soil microbes, Microbiome, 6 (1), 139.
[24] Chen, W., Zhang, H., Zhang, M., Shen, X., Zhang, X., Wu, F., Hu, J., Wang, B., and Wang, X., 2021, Removal of PAHs at high concentrations in a soil washing solution containing TX-100 via simultaneous sorption and biodegradation processes by immobilized degrading bacteria in PVA-SA hydrogel beads, J. Hazard. Mater., 410, 124533.
[25] Xu, H., Sun, X., Yang, H., Cui, J., Wang, J., Kang, Y., Deng, J., and Huang, G., 2024, Degradation of aqueous phenol by combined ultraviolet and electrochemical oxidation treatment, J. Cleaner Prod., 436, 140672.
[26] Labhane, P.K., Sonawane, G.H., and Sonawane, S.H., 2018, Influence of rare-earth metal on the zinc oxide nanostructures: Application in the photocatalytic degradation of methylene blue and p-nitro phenol, Green Process. Synth., 7 (4), 360–371.
[27] Su, S., Liu, Y., Liu, X., Jin, W., and Zhao, Y., 2019, Transformation pathway and degradation mechanism of methylene blue through β-FeOOH@GO catalyzed photo-Fenton-like system, Chemosphere, 218, 83–92.
[28] Boelan, E.G., and Purnomo, A.S., 2019, Biodegradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by mixed cultures of white-rot fungus Ganoderma lingzhi and bacterium Pseudomonas aeruginosa, HAYATI J. Biosci., 26 (2), 90–95.
[29] Hasan, R., Ying, W.J., Cheng, C.C., Jaafar, N.F., Jusoh, R., Jalil, A.A., and Setiabudi, H.D., 2020, Methylene blue adsorption onto cockle shells-treated banana pith: Optimization, isotherm, kinetic, and thermodynamic studies, Indones. J. Chem., 20 (2), 368–378.
[30] Purnomo, A.S., 2017, "Microbe-Assisted Degradation of Aldrin and Dieldrin" in Microbe-Induced Degradation of Pesticides, Eds. Singh, S.N., Springer International Publishing, Cham, Switzerland.
[31] Rouches, E., Herpoël-Gimbert, I., Steyer, J.P., and Carrere, H., 2016, Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review, Renewable Sustainable Energy Rev., 59, 179–198.
[32] Zeng, G., Cheng, M., Huang, D., Lai, C., Xu, P., Wei, Z., Li, N., Zhang, C., He, X., and He, Y., 2015, Study of the degradation of methylene blue by semi-solid-state fermentation of agricultural residues with Phanerochaete chrysosporium and reutilization of fermented residues, Waste Manage., 38, 424–430.
[33] Karunasekera, H., Terziev, N., and Daniel, G., 2017, Does copper tolerance provide a competitive advantage for degrading copper treated wood by soft rot fungi?, Int. Biodeterior. Biodegrad., 117, 105–114.
[34] Negi, R., and Suthar, S., 2018, Degradation of paper mill wastewater sludge and cow dung by brown-rot fungi Oligoporus placenta and earthworm (Eisenia fetida) during vermicomposting, J. Cleaner Prod., 201, 842–852.
[35] Zelinka, S.L., Jakes, J.E., Kirker, G.T., Bishell, A.B., Boardman, C.R., Lai, B., Sterbinsky, G.E., Jellison, J., and Goodell, B., 2021, Oxidation states of iron and manganese in lignocellulose altered by the brown rot fungus Gloeophyllum trabeum measured in-situ using X-ray absorption near edge spectroscopy (XANES), Int. Biodeterior. Biodegrad., 158, 105162.
[36] Zhu, G.C., Shou, J.X., Qian, J.W., Xin, H.Z., and Qiu, M.Q., 2014, Degradation of methylene blue by Fenton-like reaction, Adv. Mater. Res., 1065-1069, 3127–3130.
[37] Jung, Y.H., Kim, H.K., Park, H.M., Park, Y.C., Park, K., Seo, J.H., and Kim, K.H., 2015, Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose, Bioresour. Technol., 179, 467–472.
[38] Singh, S.K., 2021, Biological treatment of plant biomass and factors affecting bioactivity, J. Cleaner Prod., 279, 123546.
[39] Zhu, N., Zhu, Y., Li, B., Jin, H., and Dong, Y., 2021, Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting, Bioresour. Technol., 337, 125427.
[40] Kojima, Y., Sunagawa, N., Tagawa, S., Hatano, T., Aoki, M., Kurei, T., Horikawa, Y., Wada, M., Funada, R., Igarashi, K., and Yoshida, M., 2025, A cellulose-binding domain specific for native crystalline cellulose in lytic polysaccharide monooxygenase from the brown-rot fungus Gloeophyllum trabeum, Carbohydr. Polym., 347, 122651.
[41] Sanhueza, C., Carvajal, G., Soto-Aguilar, J., Lienqueo, M.E., and Salazar, O., 2018, The effect of a lytic polysaccharide monooxygenase and a xylanase from Gloeophyllum trabeum on the enzymatic hydrolysis of lignocellulosic residues using a commercial cellulase, Enzyme Microb. Technol., 113, 75–82.
[42] Zhu, Y., Ma, L., Hai, X., Yang, Z., Li, X., Chen, M., Yuan, M., Xiong, H., Gao, Y., Wang, L., and Shi, F., 2023, Adsorption of methyl orange by porous membranes prepared from deep eutectic supramolecular polymer-modified chitosan, Environ. Res., 236 (Pt. 2), 116778.
[43] Wang, X., Luo, H., Yu, W., Ma, R., You, S., Liu, W., Hou, L., Zheng, F., Xie, X., and Yao, B., 2016, A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry, Food Chem., 199, 516–523.
[44] Li, W., Ayers, C., Huang, W., Schilling, J.S., Cullen, D., and Zhang, J., 2023, A Laccase gene reporting system that enables genetic manipulations in a brown rot wood decomposer fungus Gloeophyllum trabeum, Microbiol. Spectrum, 11 (1), e04246-22.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.












