In Silico Analysis, Biological Activity, and ADME Profiling of Flavonoid Compounds Targeting RNA-Dependent RNA Polymerase of DENV-3

https://doi.org/10.22146/ijc.108797

Siti Zainatun Wasilah(1), Tri Wibawa(2*), Nastiti Wijayanti(3)

(1) Doctoral Program in Medical and Health Sciences, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Jl. Ngadinegaran MJ III/62, Yogyakarta 55141, Indonesia
(2) Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada Sekip Utara, Yogyakarta 55281, Indonesia
(3) Laboratory of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Dengue virus (DENV) remains a global health challenge. DENV-3 is the most virulent of the four dengue virus serotypes, requiring the identification of new inhibitors against RNA-dependent RNA polymerase (RdRp), an essential enzyme for viral replication. This study evaluated the inhibitory potential of flavonoids, including quercetin, fisetin, myricetin, daidzein, and ribavirin. Molecular docking revealed binding energies of −8.0, −7.4, −7.3, and −7.4 kcal/mol for quercetin, fisetin, myricetin, and daidzein, respectively, exceeding those of ribavirin as a control (−5.6 kcal/mol). These ligands exhibit strong interactions with active site residues, including hydrogen bonds and hydrophobic interactions. Molecular dynamics simulations of 100 ns confirmed a stable protein-ligand complex, with quercetin showing a stable RMSD and RoG values compared to the control, indicating good binding stability. SASA and hydrogen bond analysis support the stability of quercetin interactions. Pharmacokinetic evaluation shows that four ligands comply with Lipinski's rules of five, supporting their potential as drug candidates. These findings highlight the potential of quercetin, fisetin, myricetin, and daidzein as DENV-3 RdRp inhibitors, with quercetin as the most effective, with the lowest binding energy and inhibition constant. Experimental validation is needed to explore the potential antiviral effects of DENV.


Keywords


flavonoids; DENV-3; molecular docking; molecular dynamics; quercetin

Full Text:

Full Text PDF


References

[1] Hershan, A.A., 2023, Dengue virus: Molecular biology and recent developments in control strategies, prevention, management, and therapeutics, J. Pharmacol. Pharmacother., 14 (2), 107–124.

[2] Khan, M.B., Yang, Z.S., Lin, C.Y., Hsu, M.C., Urbina, A.N., Assavalapsakul, W., Wang, W.H., Chen, Y.H., and Wang, S.F., 2023, Dengue overview: An updated systemic review, J. Infect. Public Health, 16 (10), 1625–1642.

[3] Mustafa, M.S., Rasotgi, V., Jain, S., and Gupta, V., 2015, Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control, Med. J. Armed Forces India, 71 (1), 67–70.

[4] Hossain, M.I., Alam, N.E., Akter, S., Suriea, U., Aktar, S., Shifat, S.K., Islam, M.M., Aziz, I., Islam, M.M., Islam, M.S., and Mohiuddin, A.K.M., 2021, Knowledge, awareness and preventive practices of dengue outbreak in Bangladesh: A countrywide study, PLoS One, 16 (6), e0252852.

[5] Thomas, S.J., 2023, Is new dengue vaccine efficacy data a relief or cause for concern?, npj Vaccines, 8 (1), 55.

[6] Lee, M.F., Wu, Y.S., and Poh, C.L., 2023, Molecular mechanisms of antiviral agents against Dengue virus, Viruses, 15 (3), 705.

[7] Monsalve-Escudero, L.M., Loaiza-Cano, V., Zapata-Cardona, M.I., Quintero-Gil, D.C., Hernández-Mira, E., Pájaro-González, Y., Oliveros-Díaz, A.F., Diaz-Castillo, F., Quiñones, W., Robledo, S., and Martinez-Gutierrez, M., 2021, The antiviral and virucidal activities of voacangine and structural analogs extracted from Tabernaemontana cymosa depend on the dengue virus strain, Plants, 10 (7), 1280.

[8] Kausar, M.A., Ali, A., Qiblawi, S., Shahid, S.M.A., Izhari, M.A., and Saral, A., 2019, Molecular docking based design of Dengue NS5 methyltransferase inhibitors, Bioinformation, 15 (6), 394–401.

[9] Shimizu, H., Saito, A., Mikuni, J., Nakayama, E.E., Koyama, H., Honma, T., Shirouzu, M., Sekine, S., and Shioda, T., 2019, Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase, PLoS Neglected Trop. Dis., 13 (11), e0007894.

[10] Hasan, M.Z., Soikot, S., Hossain, M.M., Priota, M.F., Akther, S., Jahan, S., Bhuyian, J., Sharul, N.R., Hossain, M.M., Al Jubayed, M.A., Rahman, N., Mawya, J., Akter, N., Hosen, M.E., and Faruqe, M.O., 2025, Discovering potential inhibitors against dengue virus NS5 RNA dependent RNA polymerase from local vegetables: A comparative computational study, Discover Chem., 2 (1), 120.

[11] Pandey, P., Rane, J.S., Chatterjee, A., Kumar, A., Khan, R., Prakash, A., and Ray, S., 2021, Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development, J. Biomol. Struct. Dyn., 39 (16), 6306–6316.

[12] Joshi, R.S., Jagdale, S.S., Bansode, S.B., Shankar, S.S., Tellis, M.B., Pandya, V.K., Chugh, A., Giri, A.P., and Kulkarni, M.J., 2021, Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease, J. Biomol. Struct. Dyn., 39 (9), 3099–3114.

[13] Badshah, S.L., Faisal, S., Muhammad, A., Poulson, B.G., Emwas, A.H., and Jaremko, M., 2021, Antiviral activities of flavonoids, Biomed. Pharmacother., 140, 111596.

[14] Terefe, E.M., Okalebo, F.A., Derese, S., Muriuki, J., and Batiha, G.E.S., 2021, In vitro cytotoxicity and anti-HIV activity of crude extracts of Croton macrostachyus, Croton megalocarpus and Croton dichogamus, J. Exp. Pharmacol., 13, 971–979.

[15] LaManna, J., Puchowicz, M., Xu, K., Harrison, D., and Bruley, D., 2011, Oxygen transport to tissue XXXII, Adv. Exp. Med. Biol., 701, XXX, 374.

[16] Jadaun, A., Subbarao, N., and Dixit, A., 2017, Allosteric inhibition of topoisomerase I by pinostrobin: Molecular docking, spectroscopic and topoisomerase I activity studies, J. Photochem. Photobiol., B, 167, 299–308.

[17] Hsu, M.C., Dhingra, U., Earley, J.V, Holly, M., Keith, D., Nalin, C.M., Richou, A.R., Schutt, A.D., Tam, S.Y., and Potash, M.J., 1993, Inhibition of type 1 human immunodeficiency virus replication by a Tat antagonist to which the virus remains sensitive after prolonged exposure in vitro, Proc. Natl. Acad. Sci. U. S. A., 90 (14), 6395–6399.

[18] Palanichamy Kala, M., St. John, A.L., and Rathore, A.P.S., 2023, Dengue: Update on clinically relevant therapeutic strategies and vaccines, Curr. Treat. Options Infect. Dis., 15 (2), 27–52.

[19] Rojas, N., Del Campo, J.A., Clement, S., Lemasson, M., García-Valdecasas, M., Gil-Gómez, A., Ranchal, I., Bartosch, B., Bautista, J.D., Rosenberg, A.R., Negro, F., and Romero-Gómez, M., 2016, Effect of quercetin on Hepatitis C virus life cycle: From viral to host targets, Sci. Rep., 6 (1), 31777.

[20] Wu, W., Li, R., Li, X., He, J., Jiang, S., Liu, S., and Yang, J., 2016, Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry, Viruses, 8 (1), 6.

[21] Zandi, K., Teoh, B.T., Sam, S.S., Wong, P.F., Mustafa, M.R., and Abubakar, S., 2011, Antiviral activity of four types of bioflavonoid against dengue virus type-2, Virol. J., 8 (1), 560.

[22] Sun, Y., Li, C., Li, Z., Shangguan, A., Jiang, J., Zeng, W., Zhang, S., and He, Q., 2021, Quercetin as an antiviral agent inhibits the Pseudorabies virus in vitro and in vivo, Virus Res., 305, 198556.

[23] Lani, R., Hassandarvish, P., and AbuBakar, S., 2025, Fisetin limits Chikungunya virus-induced apoptosis hallmarks in hepatocellular carcinoma cells, Sci. Rep., 15 (1), 25140.

[24] Kang, S.Y., Kang, J.Y., and Oh, M.J., 2012, Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses in vitro, J. Microbiol., 50 (2), 293–300.

[25] Muñoz, A.L., Cuéllar, A.F., Arévalo, G., Santamaría, B.D., Rodríguez, A.K., Buendía-Atencio, C., Reyes Chaparro, A., Tenorio Barajas, A.Y., Segura, N.A., Bello, F., Suárez, A.I., Rangel, H.R., and Losada-Barragán, M., 2023, Antiviral activity of myricetin glycosylated compounds isolated from Marcetia taxifolia against chikungunya virus, EXCLI J., 22, 716–731.

[26] Li, W., Xu, C., Hao, C., Zhang, Y., Wang, Z., Wang, S., and Wang, W., 2020, Inhibition of herpes simplex virus by myricetin through targeting viral gD protein and cellular EGFR/PI3K/Akt pathway, Antiviral Res., 177, 104714.

[27] Horio, Y., Sogabe, R., Shichiri, M., Ishida, N., Morimoto, R., Ohshima, A., and Isegawa, Y., 2020, Induction of a 5-lipoxygenase product by daidzein is involved in the regulation of influenza virus replication, J. Clin. Biochem. Nutr., 66 (1), 36–42.

[28] Tatura, S.N.N., Denis, D., Santoso, M.S., Hayati, R.F., Kepel, B.J., Yohan, B., and Sasmono, R.T., 2021, Outbreak of severe dengue associated with DENV-3 in the city of Manado, North Sulawesi, Indonesia, Int. J. Infect. Dis., 106, 185–196.

[29] Hakim, F.K.N., Aryati, A., Sunari, I.G.A.A.E.P., Tanzilia, M., and Indrasari, Y.N., 2024, Viral load and the effect to severity of dengue: Does it really matter?, J. Med. Chem. Sci., 7 (10), 1277–1286.

[30] Hasan, M.M., Khan, Z., Chowdhury, M.S., Khan, M.A., Moni, M.A., and Rahman, M.H., 2022, In silico molecular docking and ADME/T analysis of quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases, Inf. Med. Unlocked, 29, 100894.

[31] Trott, O., and Olson, A.J., 2010, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 31 (2), 455–461.

[32] Krieger, E., and Vriend, G., 2014, YASARA View-molecular graphics for all devices-from smartphones to workstations, Bioinformatics, 30 (20), 2981–2982.

[33] Istyastono, E.P., and Prasasty, V.D., 2021, Computer-aided discovery of pentapeptide AEYTR as a potent acetylcholinesterase inhibitor, Indones. J. Chem., 21 (1), 243–250.

[34] Fatriansyah, J.F., Rizqillah, R.K., and Yandi, M.Y., 2022, Molecular docking and molecular dynamics simulation of fisetin, galangin, hesperetin, hesperidin, myricetin, and naringenin against polymerase of dengue virus, J. Trop. Med., 2022 (1), 7254990.

[35] Mena-Ulecia, K., Tiznado, W., and Caballero, J., 2015, Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM-GBSA, PLoS One, 10 (11), e0142774.

[36] Kumar, S., Bajrai, L.H., Faizo, A.A., Khateb, A.M., Alkhaldy, A.A., Rana, R., Azhar, E.I., and Dwivedi, V.D., 2022, Pharmacophore-model-based drug repurposing for the identification of the potential inhibitors targeting the allosteric site in dengue virus NS5 RNA-dependent RNA polymerase, Viruses, 14 (8), 1827.

[37] Bhattarai, B.R., Adhikari, B., Basnet, S., Shrestha, A., Marahatha, R., Aryal, B., Rayamajhee, B., Poudel, P., and Parajuli, N., 2022, In silico elucidation of potent inhibitors from natural products for nonstructural proteins of dengue virus, J. Chem., 2022 (1), 5398239.

[38] Du, B.X., Xu, Y., Yiu, S.M., Yu, H., and Shi, J.Y., 2023, ADMET property prediction via multi-task graph learning under adaptive auxiliary task selection, iScience, 26 (11), 108285.

[39] Rahman, T., Bappi, M.S.H., and Hossain, T.J., 2024, Prodigiosin demonstrates promising antiviral activity against dengue virus and Zika virus in in-silico study, Anal. Sci. Adv., 5 (11-12), e202400039.

[40] Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A., Rudik, A.V., Druzhilovskii, D.S., Pogodin, P.V., and Poroikov, V.V., 2014, Prediction of the biological activity spectra of organic compounds using the PASS online web resource, Chem. Heterocycl. Compd., 50 (3), 444–457.

[41] Anusuya, S., and Gromiha, M.M., 2017, Quercetin derivatives as non-nucleoside inhibitors for dengue polymerase: Molecular docking, molecular dynamics simulation, and binding free energy calculation, J. Biomol. Struct. Dyn., 35 (13), 2895–2909.

[42] Ambarsari, L., Nur, N.A., Zanah, S.S.R., Kurniawanti, K., Dianhar, H., Warnasih, S., Cahyaning Rahayu, D.U., and Sugita, P., 2024, Molecular docking of biflavonoids from genus araucaria as DENV NS5 RNA-dependent RNA polymerase inhibitor using YASARA and Plants programs, Int. J. Appl. Pharm., 16 (5), 291–299.

[43] Derewenda, Z.S., 2023, C-H groups as donors in hydrogen bonds: A historical overview and occurrence in proteins and nucleic acids, Int. J. Mol. Sci., 24 (17), 13165.

[44] Fakih, T.M., Ramadhan, D.S.F., and Darusman, F., 2021, Biological activity, molecular docking, and ADME predictions of amphibine analogues of Ziziphus spina-christi towards SARS-CoV-2 Mpro, Biogenesis, 9 (1), 109–117.

[45] Chen, Y.C., 2015, Beware of docking!, Trends Pharmacol. Sci., 36 (2), 78–95.

[46] Liu, L., Shao, S., Tu, Q., Gong, C., and Tian, B., 2024, Molecular dynamics simulation on the variations in characteristics of aqueous solution with diverse additives: Inspirations for binary ice preparation, J. Mol. Liq., 411, 125820.

[47] Schreiner, W., Karch, R., Knapp, B., and Ilieva, N., 2012, Relaxation estimation of RMSD in molecular dynamics immunosimulations, Comput. Math. Methods Med., 2012 (1), 173521.

[48] Pang, M., He, W., Lu, X., She, Y., Xie, L., Kong, R., and Chang, S., 2023, CoDock-Ligand: Combined template-based docking and CNN-based scoring in ligand binding prediction, BMC Bioinf., 24 (1), 444.

[49] Islam, M.T., Aktaruzzaman, M., Barai, C., Rafi, F.I., Hasan, A.R., Tasnim, T., Sarder, P., Albadrani, G.M., Al-Ghadi, M.Q., Sayed, A.A., Abdel-Daim, M.M., Dona, H.A., Sarkar, K.K., and Raihan, M.O., 2025, In silico screening of naturally derived dietary compounds as potential butyrylcholinesterase inhibitors for Alzheimer’s disease treatment, Sci. Rep., 15 (1), 17134.

[50] Ali, M., Hassan, M., Ansari, S.A., Alkahtani, H.M., Al-Rasheed, L.S., and Ansari, S.A., 2024, Quercetin and kaempferol as multi-targeting antidiabetic agents against mouse model of chemically induced type 2 diabetes, Pharmaceuticals, 17 (6), 757.

[51] Murthy, T.P.K., Joshi, T., Gunnan, S., Kulkarni, N., Priyanka, V., Kumar, S.B., and Gowrishankar, B.S., 2021, In silico analysis of Phyllanthus amarus phytochemicals as potent drugs against SARS-CoV-2 main protease, Curr. Res. Green Sustainable Chem., 4, 100159.

[52] Ghannay, S., Aouadi, K., Kadri, A., and Snoussi, M., 2022, In vitro and in silico screening of anti-Vibrio spp., antibiofilm, antioxidant and anti-quorum sensing activities of Cuminum cyminum L. volatile oil, Plants, 11 (17), 2236.

[53] Daina, A., Michielin, O., and Zoete, V., 2017, SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep., 7 (1), 42717.

[54] Harahap, I.A., Olejnik, A., Kowalska, K., and Suliburska, J., 2024, Effects of daidzein, tempeh, and a probiotic digested in an artificial gastrointestinal tract on calcium deposition in human osteoblast-like saos-2 cells, Int. J. Mol. Sci., 25 (2), 1008.

[55] Preston, S.L., Drusano, G.L., Glue, P., Nash, J., Gupta, S.K., and McNamara, P., 1999, Pharmacokinetics and absolute bioavailability of ribavirin in healthy volunteers as determined by stable-isotope methodology, Antimicrob. Agents Chemother., 43 (10), 2451–2456.

[56] Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., Huai, C., Shen, L., Zhang, N., He, L., and Qin, S., 2021, Cytochrome P450 enzymes and drug metabolism in humans, Int. J. Mol. Sci., 22 (23), 12808.

[57] Bojić, M., Kondža, M., Rimac, H., Benković, G., and Maleš, Ž., 2019, The effect of flavonoid aglycones on the CYP1A2, CYP2A6, CYP2C8 and CYP2D6 enzymes activity, Molecules, 24 (17), 3174.

[58] Kondža, M., Mandić, M., Ivančić, I., Vladimir-Knežević, S., and Brizić, I., 2023, Artemisia annua L. extracts irreversibly inhibit the activity of CYP2B6 and CYP3A4 enzymes, Biomedicines, 11 (1), 232.

[59] Kondža, M., Brizić, I., and Jokić, S., 2024, Flavonoids as CYP3A4 inhibitors in vitro, Biomedicines, 12 (3), 644.

[60] Zheng, W., Wu, H., Wang, T., Zhan, S., and Liu, X., 2021, Quercetin for COVID-19 and DENGUE co-infection: A potential therapeutic strategy of targeting critical host signal pathways triggered by SARS-CoV-2 and DENV, Briefings Bioinf., 22 (6), bbab199.

[61] Te, H.S., Randall, G., and Jensen, D.M., 2007, Mechanism of action of ribavirin in the treatment of chronic hepatitis C, Gastroenterol. Hepatol., 3 (3), 218–225.

[62] Helenius, A., 2018, Virus entry: Looking back and moving forward, J. Mol. Biol., 430 (13), 1853–1862.



DOI: https://doi.org/10.22146/ijc.108797

Article Metrics

Abstract views : 157 | views : 34


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.