Preparation and Antibacterial Properties of Composite Films Based on PVA and Chitosan Combined with Melanin Nanoparticles

https://doi.org/10.22146/ijc.107680

Zainal Mustakim(1), Agus Prasetya(2), Joko Wintoko(3), Fanny Sakinah(4), Abdul Rahman Siregar(5), Zahrul Mufrodi(6), Pandji Prawisudha(7), Kun Sri Budiasih(8), Chandra Wahyu Purnomo(9*)

(1) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia; Department of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Gresik, Jl. Sumatera No. 101, Gresik 61121, Indonesia
(2) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(3) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(5) Microbiology Laboratory, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Jend. Ahmad Yani, Banguntapan, Bantul, Yogyakarta 55191, Indonesia
(7) Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia
(8) Department of Chemistry Education, Faculty of Mathematics and Natural Science, Universitas Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
(9) Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
(*) Corresponding Author

Abstract


Developing biodegradable films with antimicrobial properties is essential for advancing sustainable packaging and biomedical applications. In this study, PVA/chitosan composite films were successfully fabricated and reinforced with melanin nanoparticles (MNPs) derived from black soldier fly (BSF) pupae waste to enhance their functional performance. The films were prepared using solution casting with varying concentrations of MNPs (0.0, 0.5, 1.0, and 2.0% w/w). FTIR analysis confirmed molecular interactions between the polymer matrix and melanin, while degradation tests showed enhanced stability due to melanin’s hydrophobicity and antioxidant properties. Incorporating melanin significantly improved the films' structural integrity, surface morphology, and antibacterial activity against Escherichia coli and Staphylococcus aureus. These findings highlight the potential of PVA–chitosan–melanin composite films as promising candidates for active food packaging and biomedical applications, combining biodegradability with enhanced functional performance derived from sustainable BSF-based materials.


Keywords


antibacterial activity; BSF; chitosan; melanin nanoparticles; polyvinyl alcohol

Full Text:

Full Text PDF


References

[1] Moshood, T.D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M.H., and AbdulGhani, A., 2022, Biodegradable plastic applications towards sustainability: A recent innovations in the green product, Cleaner Eng. Technol., 6, 100404.

[2] Santini, G., Zizolfi, M., Santorufo, L., Memoli, V., D’Ascoli, R., and Maisto, G., 2024, Soil microbial biomass and microarthropod community responses to conventional and biodegradable plastics, Soil Syst., 8 (3), 92.

[3] Karnwal, A., Kumar, G., Singh, R., Selvaraj, M., Malik, T., and Al Tawaha, A.R.M., 2025, Natural biopolymers in edible coatings: Applications in food preservation, Food Chem.: X, 25, 102171.

[4] Matar, G.H., and Andac, M., 2025, Recent advances in sustainable biopolymer films incorporating vanillin for enhanced food preservation and packaging, Polym. Bull., 82 (8), 2751–2777.

[5] Galstyan, A., and Strokov, K., 2022, Influence of photosensitizer concentration and polymer composition on photoinduced antimicrobial activity of PVA- and PVA-chitosan-based electrospun nanomaterials cross-linked with tailor-made silicon(IV) phthalocyanine, Photochem. Photobiol. Sci., 21 (8), 1387–1398.

[6] Choo, K.W., Dhital, R., Mao, L., Lin, M., and Mustapha, A., 2021, Development of polyvinyl alcohol/chitosan/modified bacterial nanocellulose films incorporated with 4-hexylresorcinol for food packaging applications, Food Packag. Shelf Life, 30, 100769.

[7] Yan, J., Li, M., Wang, H., Lian, X., Fan, Y., Xie, Z., Niu, B., and Li, W., 2021, Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites, Food Control, 126, 108049.

[8] Alvarado, M.C., 2024, Recent progress in polyvinyl alcohol (PVA)/nanocellulose composite films for packaging applications: A comprehensive review of the impact on physico-mechanical properties, Food Bioeng., 3 (2), 189–209.

[9] Hong, F., Qiu, P., Wang, Y., Ren, P., Liu, J., Zhao, J., and Gou, D., 2024, Chitosan-based hydrogels: From preparation to applications, a review, Food Chem.: X, 21, 101095.

[10] Assauqi, N.F., Lusiana, R.A., and Masruchin, N., 2025, Optimization of chitosan-PEG/ZnO hydrogel formulation with pomegranate peel extract as an alternative for wound healing, Indones. J. Chem., 25 (3), 905–918.

[11] He, H., Wu, Z., Xiao, S., and Yin, P., 2024, Characterization of corn starch/chitosan composite films incorporated with amino-, carboxyl-,and hydroxyl-terminated hyperbranched dendrimers: A comparative study, Int. J. Biol. Macromol., 283 (Pt. 1), 137573.

[12] Bernal, R.A.O., Olekhnovich, R.O., and Uspenskaya, M.V., 2023, Influence of thermal treatment and acetic acid concentration on the electroactive properties of chitosan/PVA-based micro- and nanofibers, Polymers, 15 (18), 3719.

[13] Liu, Y., Wang, S., Lan, W., and Qin, W., 2017, Fabrication and testing of PVA/chitosan bilayer films for strawberry packaging, Coatings, 7 (8), 109.

[14] He, Y., Zhang, X., Zhang, Z., Lin, B., and Yu, H., 2025, Preparation and improved properties of vanillin-crosslinked polyvinyl alcohol/chitosan active packaging films, Molecules, 30 (6), 1334.

[15] Sun, R., Li, L., Zhou, J., Zhang, Y., Sun, H., Zhang, D., and Wu, Q., 2025, Development of zein–PEG400/PVA–chitosan bilayer films for intelligent packaging, Polymers, 17 (3), 387.

[16] de Morais Mirres, A.C., Vieira, I.R., Tessaro, L., da Silva, B.D., de Andrade, J.C., da Silva, A.A., Carvalho, N.M.F., de Sousa, A.M., and Conte-Junior, C.A., 2024, Nanocomposite films of babassu coconut mesocarp and green ZnO nanoparticles for application in antimicrobial food packaging, Foods, 13 (12), 1895.

[17] Jafarzadeh, S., Oladzadabbasabadi, N., Dheyab, M.A., Lalabadi, M.A., Sheibani, S., Ghasemlou, M., Esmaeili, Y., Barrow, C.J., Naebe, M., and Timms, W., 2025, Emerging trends in smart and sustainable nano-biosensing: The role of green nanomaterials, Ind. Crops Prod., 223, 120108.

[18] Escobar Rodríguez, C., Zaremska, V., Klammsteiner, T., Kampatsikas, I., Münstermann, N., Weichold, O., and Gruber, S., 2025, Chitosan obtained from black soldier fly larval cuticles expands the value chain and is effective as a biocontrol agent to combat plant pathogens, Carbohydr. Polym., 349 (Pt. B), 123023.

[19] Chen, Y., Guo, Y., He, X., Tan, B., Liao, Z., Chen, A., Gu, X., Li, X., Chen, X., Chen, B., Lin, S., Li, W., Hu, P., Zhu, X., Zhao, W., and Niu, J., 2025, Comprehensive utilization of black soldier fly (Hermetia illucens) larvae: Extraction, recovery and characterization of peptide, chitin and melanin and scaling-up trial, Sep. Purif. Technol., 361, 131262.

[20] Liang, Y., Zhao, Y., Sun, H., Dan, J., Kang, Y., Zhang, Q., Su, Z., Ni, Y., Shi, S., Wang, J., and Zhang, W., 2023, Natural melanin nanoparticle-based photothermal film for edible antibacterial food packaging, Food Chem., 401, 134117.

[21] Sunil Kumar, B.T., Sathyendra Rao, B.V., Swathi, S., Vanajakshi, V., Hebbar, H.U., and Singh, S.A., 2024, Characterization, antioxidant, and antimicrobial activity of melanin extracted from nigerseed hulls, Food Biosci., 61, 104929.

[22] Mustakim, Z., Prasetya, A., Wintoko, J., Kayati, F.N., and Purnomo, C.W., 2024, Review on melanin application as an antibacterial and antioxidant agent in food packaging, Indones. J. Chem., 24 (6), 1906–1920.

[23] Liu, C., Zou, Q., Tang, H., Liu, J., Zhang, S., Fan, C., Zhang, J., Liu, R., Liu, Y., Liu, R., Zhao, Y., Wu, Q., Qi, Z., and Shen, Y., 2023, Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation, Bioact. Mater., 24, 313–321.

[24] Le, T.K., Lai, S.Y., Huang, Y.W., Chen, Y.T., Hou, C.Y., and Hsieh, S.L., 2024, Antioxidant activity and mechanism of melanin from cuttlefish (Sepia pharaonis) ink on Clone-9 cells, Food Biosci., 60, 104444.

[25] Qin, Y., and Xia, Y., 2024, Melanin in fungi: Advances in structure, biosynthesis, regulation, and metabolic engineering, Microb. Cell Fact., 23 (1), 334.

[26] Guo, L., Li, W., Gu, Z., Wang, L., Guo, L., Ma, S., Li, C., Sun, J., Han, B., and Chang, J., 2023, Recent advances and progress on melanin: From source to application, Int. J. Mol. Sci., 24 (5), 4360.

[27] Roy, S., and Rhim, J.W., 2019, Agar-based antioxidant composite films incorporated with melanin nanoparticles, Food Hydrocolloids, 94, 391–398.

[28] Bruno, D., Orlando, M., Testa, E., Carnevale Miino, M., Pesaro, G., Miceli, M., Pollegioni, L., Barbera, V., Fasoli, E., Draghi, L., Baltrocchi, A.P.D., Ferronato, N., Seri, R., Maggi, E., Caccia, S., Casartelli, M., Molla, G., Galimberti, M.S., Torretta, V., Vezzulli, A., and Tettamanti, G., 2025, Valorization of organic waste through black soldier fly: On the way of a real circular bioeconomy process, Waste Manage., 191, 123–134.

[29] Salsabila, S., Kerdpiboon, S., Kerr, W.L., and Puttongsiri, T., 2024, Drying effects on physicochemical and functional properties of cuttlefish (Sepia officinalis) ink powder, J. Agric. Food Res., 17, 101250.

[30] Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., Zibek, S., Gagliardini, A., Panariello, L., Coltelli, M.B., De Bonis, A., and Falabella, P., 2022, Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process, Sci. Rep., 12 (1), 6613.

[31] Bahndral, A., Shams, R., Dash, K.K., Chaudhary, P., Mukarram Shaikh, A., and Béla, K., 2025, Microwave assisted extraction of chitosan from Agaricus bisporus: Techno-functional and microstructural properties, Carbohydr. Polym. Technol. Appl., 9, 100730.

[32] Ghanim, B., O’Dwyer, T.F., Leahy, J.J., Willquist, K., Courtney, R., Pembroke, J.T., and Murnane, J.G., 2020, Application of KOH modified seaweed hydrochar as a biosorbent of Vanadium from aqueous solution: Characterisations, mechanisms and regeneration capacity, J. Environ. Chem. Eng., 8 (5), 104176.

[33] Hahn, T., Egger, J., Krake, S., Dyballa, M., Stegbauer, L., von Seggern, N., Bruheim, I., and Zibek, S., 2024, Comprehensive characterization and evaluation of the process chain and products from Euphausia superba exocuticles to chitosan, J. Appl. Polym. Sci., 141 (2), e-54789.

[34] Coltelli, M.B., Gigante, V., Panariello, L., Aliotta, L., Scieuzo, C., Falabella, P., and Lazzeri, A., 2025, Chitin and chitosan materials from black soldier fly (Hermetia Illucens): An insight onto their thermal degradation and mechanical behavior linked to their copolymeric structure, Polym. Test., 150, 108922.

[35] Liang, M., Wang, H., Zhou, Z., Huang, Y., and Suo, H., 2025, Antibacterial mechanism of Lactiplantibacillus plantarum SHY96 cell-free supernatant against Listeria monocytogenes revealed by metabolomics and potential application on chicken breast meat preservation, Food Chem.: X, 25, 102078.

[36] Das, P., Das, M., Sahoo, S.K., Dandapat, J., and Pradhan, J., 2025, Characterization of extracellular chitin deacetylase from Aneurinibacillus aneurinilyticus isolated from marine crustacean shell, Curr. Res. Microb. Sci., 8, 100325.

[37] Koch, S.M., Freidank-Pohl, C., Siontas, O., Cortesao, M., Mota, A., Runzheimer, K., Jung, S., Rebrosova, K., Siler, M., Moeller, R., and Meyer, V., 2023, Aspergillus niger as a cell factory for the production of pyomelanin, a molecule with UV-C radiation shielding activity, Front. Microbiol., 14, 1233740.

[38] Zhu, Y.K., Li, M.H., Yang, M., Xu, J.X., Ren, M.Y., Zhao, Z.K., Wang, L., Yang, J., Liu, J., and Zhang, M.W., 2025, Extraction of walnut protein using deep eutectic solvent aqueous two-phase system: Investigation of structural and functional properties, Food Chem.: X, 28, 102546.

[39] Wibowo, J.T., Kellermann, M.Y., Petersen, L.E., Alfiansah, Y.R., Lattyak, C., and Schupp, P.J., 2022, Characterization of an insoluble and soluble form of melanin produced by Streptomyces cavourensis SV 21, a sea cucumber associated bacterium, Mar. Drugs, 20 (1), 54.

[40] Abd El-Aziz, S.M., Faraag, A.H.I., Ibrahim, A.M., Albrakati, A., and Bakkar, M.R., 2024, Tyrosinase enzyme purification and immobilization from Pseudomonas sp. EG22 using cellulose coated magnetic nanoparticles: characterization and application in melanin production, World J. Microbiol. Biotechnol., 40 (1), 10.

[41] Garavand, Y., Taheri‐Garavand, A., Garavand, F., Shahbazi, F., Khodaei, D., and Cacciotti, I., 2022, Starch‐polyvinyl alcohol‐based films reinforced with chitosan nanoparticles: Physical, mechanical, structural, thermal and antimicrobial properties, Appl. Sci., 12 (3), 1111.

[42] Momtaz, F., Momtaz, E., Mehrgardi, M.A., Momtaz, M., Narimani, T., and Poursina, F., 2024, Enhanced antibacterial properties of polyvinyl alcohol/starch/chitosan films with NiO–CuO nanoparticles for food packaging, Sci. Rep., 14 (1), 7356.

[43] Rajasekaran, B., Singh, A., Ponnusamy, A., Patil, U., Zhang, B., Hong, H., and Benjakul, S., 2023, Ultrasound treated fish myofibrillar protein: Physicochemical properties and its stabilizing effect on shrimp oil-in-water emulsion, Ultrason. Sonochem., 98, 106513.

[44] Yuan, J., Ran, M., Zhou, X., Zhu, P., Liu, L., Jiang, R., and Zhou, X., 2024, The impact of heterogeneity of aggregates coated with asphalt mortar on their FTIR spectra and spectral reproducibility, Appl. Sci., 14 (13), 5857.

[45] Grasso, M., Petrov, V., and Manera, A., 2024, Accuracy and error analysis of optical liquid film thickness measurement with total internal reflection method (TIRM), Exp. Fluids, 65 (6), 83.

[46] Roy, S., and Rhim, J.W., 2020, Preparation of carbohydrate-based functional composite films incorporated with curcumin, Food Hydrocolloids, 98, 105302.

[47] Shankar, S., and Rhim, J.W., 2017, Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties, Food Hydrocolloids, 71, 76–84.

[48] Eskandari, Z., Osanloo, M., Mazloomi, S.M., Zarenezhad, E., Mollakhalili-Meybodi, N., and Nematollahi, A., 2025, Bioactive edible films for chicken breast packaging: Integration of chia seed mucilage with nanoemulsions of Cinnamomum zeylanicum and Satureja khuzestanica, Appl. Food Res., 5 (1), 100959.

[49] Alshabanat, M., 2019, Morphological, thermal, and biodegradation properties of LLDPE/treated date palm waste composite buried in a soil environment, J. Saudi Chem. Soc., 23 (3), 355–364.

[50] Sultan, A., Sultan, H., Shahzad, W., Kareem, A., Liaqat, A., Ashraf, Z., Shahid, A., Rauf, A., Saeed, S., Mehmood, T., Zahra, M., Soto-Bubert, A., and Acevedo, R., 2024, Comparative analysis of physical and mechanical properties of starch based bioplastic derived from the pulp and peel of potatoes, J. Indian Chem. Soc., 101 (10), 101301.

[51] Goy, R.C., Morais, S.T.B., and Assis, O.B.G., 2016, Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth, Rev. Bras. Farmacogn., 26 (1), 122–127.

[52] Afrin, S., Tamanna, T., Shahajadi, U.F., Bhowmik, B., Jui, A.H., Miah, M.A.S., and Bhuiyan, M.N.I., 2024, Characterization of protease-producing bacteria from garden soil and antagonistic activity against pathogenic bacteria, Microbe, 4, 100123.

[53] Wacogne, B., Belinger Podevin, M., Vaccari, N., Koubevi, C., Codjiová, C., Gutierrez, E., Davoine, L., Robert-Nicoud, M., Rouleau, A., and Frelet-Barrand, A., 2024, Concentration vs. optical density of ESKAPEE bacteria: A method to determine the optimum measurement wavelength, Sensors, 24 (24), 8160.

[54] Poulose, N., Sajayan, A., Ravindran, A., Sreechithra, T.V., Vardhan, V., Selvin, J., and Kiran, G.S., 2020, Photoprotective effect of nanomelanin-seaweed concentrate in formulated cosmetic cream: With improved antioxidant and wound healing properties, J. Photochem. Photobiol., B, 205, 111816.

[55] Tan, Y., Liu, X., Cheng, Z., Zhan, Q., and Zhao, L., 2024, Preparation and characterization of bio-based freshness indicator labels loaded with natural pigments with high stability and sensitivity, Foods, 13 (24), 4049.

[56] Yang, Y., Fu, J., Duan, Q., Xie, H., Dong, X., and Yu, L., 2024, Strategies and methodologies for improving toughness of starch films, Foods, 13 (24), 4036.

[57] Ruiz Matute, A.I., Cardelle-Cobas, A., García-Bermejo, A.B., Montilla, A., Olano, A., and Corzo, N., 2013, Synthesis, characterization and functional properties of galactosylated derivatives of chitosan through amide formation, Food Hydrocolloids, 33 (2), 245–255.

[58] Wu, J., Wang, M.J., and Stark, J.P.W., 2006, Evaluation of band structure and concentration of ionic liquid BMImBF4 in molecular mixtures by using second derivatives of FTIR spectra, J. Quant. Spectrosc. Radiat. Transfer, 102 (2), 228–235.

[59] Kivilcim, F.N., 2025, Heat treatment impacts on film morphology in biaxially oriented polypropylene films, Food Sci. Nutr., 13 (6), e70458.

[60] Kumar, S., Ye, F., Mazinani, B., Dobretsov, S., and Dutta, J., 2021, Chitosan nanocomposite coatings containing chemically resistant ZnO–SnOx core–shell nanoparticles for photocatalytic antifouling, Int. J. Mol. Sci., 22 (9), 4513.

[61] Ferreira, P.G., Ferreira, V.F., da Silva, F.C., Freitas, C.S., Pereira, P.R., and Paschoalin, V.M.F., 2022, Chitosans and nanochitosans: Recent advances in skin protection, regeneration, and repair, Pharmaceutics, 14 (6), 1307.

[62] Marasinghe, W.N., Jayathunge, K.G.L.R., Dassanayake, R.S., Liyanage, R., Bandara, P.C., Rajapaksha, S.M., and Gunathilake, C., 2024, Structure, properties, and recent developments in polysaccharide- and aliphatic polyester-based packaging—A review, J. Compos. Sci., 8 (3), 114.

[63] Mavridi-Printezi, A., Menichetti, A., Mordini, D., and Montalti, M., 2023, Functionalization of and through melanin: Strategies and bio-applications, Int. J. Mol. Sci., 24 (11), 9689.

[64] Tumilaar, S.G., Hardianto, A., Dohi, H., and Kurnia, D., 2023, A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds, J. Chem., 2024 (1), 5594386.

[65] Sutkar, P.R., Gadewar, R.D., and Dhulap, V.P., 2023, Recent trends in degradation of microplastics in the environment: A state-of-the-art review, J. Hazard. Mater. Adv., 11, 100343.

[66] Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., and Suh, S., 2020, Degradation rates of plastics in the environment, ACS Sustainable Chem. Eng., 8 (9), 3494–3511.

[67] García-García, M., Jaime-Ferrer, J.S., Medrano-Lango, F.N., Quintana-Rodríguez, E., Campos-García, T., Rodríguez-Sevilla, E., and Orona-Tamayo, D., 2025, Electrospun membranes loaded with melanin derived from pecan nutshell (Carya illinoinensis) residues for skin-care applications, Membranes, 15 (2), 44.

[68] Li, B., Mei, H., Zhou, Z., Yang, J., Zhang, Y., and Qi, F., 2024, The main causes and corresponding solutions of skin pigmentation in the body, J. Dermatol. Sci. Cosmet. Technol., 1 (2), 100020.

[69] Yadav, H., Malviya, R., and Kaushik, N., 2024, Chitosan in biomedicine: A comprehensive review of recent developments, Carbohydr. Polym. Technol. Appl., 8, 100551.

[70] Tan, R., Li, F., Zhang, Y., Yuan, Z., Feng, X., Zhang, W., Liang, T., Cao, J., De Hoop, C.F., Peng, X., and Huang, X., 2021, High-performance biocomposite polyvinyl alcohol (PVA) films modified with cellulose nanocrystals (CNCs), tannic acid (TA), and chitosan (CS) for food packaging, J. Nanomater., 2021 (1), 4821717.

[71] Łopusiewicz, Ł., Jedra, F., and Mizieińska, M., 2018, New poly(lactic acid) active packaging composite films incorporated with fungal melanin, Polymers, 10 (4), 386.

[72] Xu, C., Li, J., Yang, L., Shi, F., Yang, L., and Ye, M., 2017, Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus, Food Control, 73, 1445–1451.

[73] Aqlinia, M., Astuti, R.I., Prastya, M.E., and Wahyudi, A.T., 2025, Antioxidant potential of melanin pigment from marine sponge-associated actinomycete Micromonospora sp., J. Appl. Pharm. Sci., 15 (4), 212–224.

[74] Zhong, Y., Ma, T., Fu, Z., Chen, A., Yu, J., Huang, Y., and Fu, J., 2023, Effects of hydrogen peroxide-induced oxidative stress on intestinal morphology, redox status, and related molecules in squabs, Animals, 13 (4), 749.

[75] Liu, L., Li, S., Zhu, W., Bao, Q., Liang, Y., Zhao, T., Li, X., and Zhou, J., 2024, Study on the mechanism of ROS-induced oxidative stress injury and the broad-spectrum antimicrobial performance of nickel ion-doped V6O13 powder, Sci. Rep., 14 (1), 22374.

[76] Jena, A.B., Samal, R.R., Bhol, N.K., and Duttaroy, A.K., 2023, Cellular Red-Ox system in health and disease: The latest update, Biomed. Pharmacother., 162, 114606.

[77] Rahmani Eliato, T., Smith, J.T., Tian, Z., Kim, E.S., Hwang, W., Andam, C.P., and Kim, Y.J., 2021, Melanin pigments extracted from horsehair as antibacterial agents, J. Mater. Chem. B, 9 (6), 1536–1545.

[78] Breijyeh, Z., Jubeh, B., and Karaman, R., 2020, Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it, Molecules, 25 (6), 1340.

[79] Yue, Y., and Zhao, X., 2021, Melanin-like nanomedicine in photothermal therapy applications, Int. J. Mol. Sci., 22 (1), 399.



DOI: https://doi.org/10.22146/ijc.107680

Article Metrics

Abstract views : 478 | views : 89


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.