Anticancer and Antimalarial Assays of Xanthone-Fatty Acid Hybrids: Integrative In Vitro and In Silico Evaluation
Yehezkiel Steven Kurniawan(1), Harizal Harizal(2), Ervan Yudha(3), Kasta Gurning(4), Harno Dwi Pranowo(5), Eti Nurwening Sholikhah(6), Jumina Jumina(7*)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Department of Pharmacy, Faculty of Health Sciences, Universitas Esa Unggul, Jakarta 11510, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(4) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia; Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan 20141, Indonesia
(5) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(6) Department of Pharmacology and Therapeutics, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(7) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
(*) Corresponding Author
Abstract
Cancer and malaria are two fatal diseases found in Indonesia over the past several years. Therefore, researchers are trying their best to find new anticancer and antimalarial agents. In the present work, we evaluated five xanthone-fatty acid hybrids, i.e., xanthyl laurate (XL), xanthyl myristate (XM), xanthyl palmitate (XP), xanthyl stearate (XS), and xanthyl oleate (XO), as novel anticancer and antimalarial agents. The cytotoxicity assay towards NIH3T3 reveals that xanthone-fatty acid hybrids showed a selectivity index up to 282.08, demonstrating their non-toxic profile. The MTT assay found that XO yielded stronger breast anticancer activity than doxorubicin as the positive control. All xanthone-fatty acid hybrids exhibited moderate antimalarial activity with IC50 values of 24.24–87.57 µM, lower than that of chloroquine diphosphate as the positive control (4.26 µM). As the best anticancer agent for breast cancer, the mode of action of XO was further studied by computational studies. The molecular docking results showed the binding energy against the HER2 protein was −45.73 kJ/mol through a hydrogen bond with Lys753. This hydrogen bond remained stable until the end of the molecular dynamics simulations for 100 ns. These findings highlight the potential application of XO as a new drug candidate for breast cancer treatment.
Keywords
References
[1] Siegel, R.L., Kratzer, T.B., Giaquinto, A.N., Sung, H., and Jemal, A., 2025, Cancer statistics, 2025, Ca-Cancer J. Clin., 75 (1), 10–45.
[2] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., and Jemal, A., 2024, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, Ca-Cancer J. Clin., 74 (3), 229–263.
[3] Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A., and Bray, F., 2021, Cancer statistics for the year 2020: An overview, Int. J. Cancer, 149 (4), 778–789.
[4] Ministry of Health of the Republic of Indonesia, 2024, Kasus Malaria di Indonesia, https://malaria.kemkes.go.id/case#, accessed on May 15, 2025.
[5] Geng, C., Cui, C., Wang, C., Lu, S., Zhang, M., Chen, D., and Jiang, P., 2020, Systematic evaluations of doxorubicin-induced toxicity in rats based on metabolomics, ACS Omega, 6 (1), 358–366.
[6] Galfetti, E., Cerutti, A., Ghielmini, M., Zucca, E., and Wannesson, L., 2020, Risk factors for renal toxicity after inpatient cisplatin administration, BMC Pharmacol. Toxicol., 21 (1), 19.
[7] Mielke, H., Algharably, E.A.E., and Gundert-Remy, U., 2025, 5-Fluorouracil toxicity: Revisiting the relevance of pharmacokinetic parameters, Pharmaceuticals, 18 (5), 653.
[8] Biguetti, C.C., Junior, J.F.S., Fiedler, M.W., Marrelli, M.T., and Brotto, M., 2021, The toxic effects of chloroquine and hydroxychloroquine on skeletal muscle: A systematic review and meta-analysis, Sci. Rep., 11 (1), 6589.
[9] Fundytus, A., Sengar, M., Lombe, D., Hopman, W., Jalink, M., Gyawali, B., Trapani, D., Roitberg, F., De Vries, E.G.E., Moja, L., Ilbawi, A., Sullivan, R., and Booth, C.M., 2021, Access to cancer medicines deemed essential by oncologists in 82 countries: An international, cross-sectional survey, Lancet Oncol., 22 (10), 1367–1377.
[10] Pandey, S.K., Anand, U., Siddiqui, W.A., and Tripathi, R., 2023, Drug development strategies for malaria: With the hope for new antimalarial drug discovery—An update, Adv. Med., 2023 (1), 5060665.
[11] McVicker, R.U., and O’Boyle, N.M., 2024, Chirality of new drug approvals (2013–2022): Trends and perspectives, J. Med. Chem., 67 (4), 2305–2320.
[12] Kurniawan, Y.S., Priyangga, K.T.A., Jumina, J., Pranowo, H.D., Sholikhah, E.N., Zulkarnain, A.K., Fatimi, H.A., and Julianus, J., 2021, An update on the anticancer activity of xanthone derivatives: A review, Pharmaceuticals, 14 (11), 1144.
[13] Kurniawan, Y.S., Amrulloh, H., Yudha, E., Fatmasari, N., Hermawan, F., Fitria, A., Pranowo, H.D., Sholikhah, E.N., and Jumina, J., 2025, Evaluation of xanthone and cinnamoylbenzene as anticancer agents for breast cancer cell lines through in vitro and in silico assays, J. Multidiscip. Appl. Nat. Sci., 5 (1), 87–102.
[14] Konyanee, A., Chaniad, P., Chukaew, A., Payaka, A., Septama, A.W., Phuwajaroanpong, A., Plirat, W., and Punsawad, C., 2024, Antiplasmodial potential of isolated xanthones from Mesua ferrea Linn. roots: An in vitro and in silico molecular docking and pharmacokinetics study, BMC Complementary Med. Ther., 24 (1), 282.
[15] Durães, F., Resende, D.I.S.P., Palmeira, A., Szemerédi, N., Pinto, M.M.M., Spengler, G., and Sousa, E., 2021, Xanthones active against multidrug resistance and virulence mechanisms of bacteria, Antibiotics, 10 (5), 600.
[16] Rząd, K., Ioannidi, R., Marakos, P., Pouli, N., Olszewski, M., Kostakis, I.K., and Gabriel, I., 2023, Xanthone synthetic derivatives with high anticandidal activity and positive mycostatic selectivity index values, Sci. Rep., 13 (1), 11893.
[17] Karim, N., Rahman, M.A., Changlek, S., and Tangpong, J., 2020, Short-time administration of xanthone from garcinia mangostana fruit pericarp attenuates the hepatotoxicity and renotoxicity of type II diabetes mice, J. Am. Coll. Nutr., 39 (6), 501–510.
[18] Kang, H.H., Zhang, H.B., Zhong, M.J., Ma, L.Y., Liu, D.S., Liu, W.Z., and Ren, H., 2018, Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae, Mar. Drugs, 16 (11), 449.
[19] Pinto, M.M.M., Palmeira, A., Fernandes, C., Resende, D.I.S.P., Sousa, E., Cidade, H., Tiritan, M.E., Correia-da-Silva, M., and Cravo, S., 2021, From natural products to new synthetic small molecules: A journey through the world of xanthones, Molecules, 26 (2), 431.
[20] Plötz, T., von Hanstein, A.S., Krümmel, B., Laporte, A., Mehmeti, I., and Lenzen, S., 2019, Structure-toxicity relationships of saturated and unsaturated free fatty acids for elucidating the lipotoxic effects in human EndoC-βH1 beta-cells, Biochim. Biophys. Acta, Mol. Basis Dis., 1865 (11), 165525.
[21] Fatmayanti, B.R., Jumina, J., Purwono, B., Kurniawan, Y.S., Pranowo, H.D., and Sholikhah, E.N., 2024, Oleate epoxides derived from palm oil as new anticancer agents: Synthesis, cytotoxicity evaluation, and molecular docking studies against FASN protein, ChemistrySelect, 9 (17), e202400752.
[22] Sampath Kumar, H.M., Herrmann, L., and Tsogoeva, S.B., 2020, Structural hybridization as a facile approach to new drug candidates, Bioorg. Med. Chem. Lett., 30 (23), 127514.
[23] Lundberg, B.B., Risovic, V., Ramaswamy, M., and Wasan, K.M., 2003, A lipophilic paclitaxel derivative incorporated in a lipid emulsion for parenteral administration, J. Controlled Release, 86 (1), 93–100.
[24] Huan, M., Zhou, S., Teng, Z., Zhang, B., Liu, X., Wang, J., and Mei, Q., 2009, Conjugation with alpha-linolenic acid improves cancer cell uptake and cytotoxicity of doxorubicin, Bioorg. Med. Chem. Lett., 19 (9), 2579–2584.
[25] Barbosa, F., Araújo, J., Gonçalves, V.M.F., Palmeira, A., Cunha, A., Silva, P.M.A., Fernandes, C., Pinto, M., Bousbaa, H., Queirós, O., and Tiritan, M.E., 2024, Evaluation of antitumor activity of xanthones conjugated with amino acids, Int. J. Mol. Sci., 25 (4), 2121.
[26] Kurniawan, Y.S., Yudha, E., Jumina, J., Pranowo, H.D., and Sholikhah, E.N., 2025, Synthesis, in vitro antimicrobial activity, and in silico bioinformatical approach of xanthone-fatty acid esters against Staphylococcus aureus, Escherichia coli, and Candida albicans, Eur. J. Med. Chem. Rep., 13, 100245.
[27] Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., and Olson, A.J., 2009, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 30 (16), 2785–2791.
[28] Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., and Lindahl, E., 2015, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1-2, 19–25.
[29] BIOVIA, Dassault Systèmes, 2017, Discovery Studio Visualizer ver. 17.2.0.16349, Dassault Systèmes, San Diego, US.
[30] Fuhrmann, J., Rurainski, A., Lenhof, H.P., and Neumann, D., 2010, A new Lamarckian genetic algorithm for flexible ligand-receptor docking, J. Comput. Chem., 31 (9), 1911–1918.
[31] Kurniawan, Y.S., Fatmasari, N., Jumina, J., Pranowo, H.D., and Sholikhah, E.N., 2024, Evaluation of the anticancer activity of hydroxyxanthones against human liver carcinoma cell line, J. Multidiscip. Appl. Nat. Sci., 4 (1), 1–15.
[32] Huang, J., and MacKerell, A.D.Jr., 2013, CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data, J. Comput. Chem., 34 (25), 2135–2145.
[33] Vanommeslaeghe, K., MacKerell, A.D.Jr., 2012, Automation of the CHARMM General Force Field (CGenFF) I: Bond perception and atom typing, J. Chem. Inf. Model., 52 (12), 3144–3154.
[34] Vanommeslaeghe, K., Raman, E.P., and MacKerell, A.D.Jr., 2012, Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges, J. Chem. Inf. Model., 52 (12), 3155–3168.
[35] Mark, P., and Nilsson, L., 2001, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A, 105 (43), 9954–9960.
[36] Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G., 1995, A smooth particle mesh Ewald method, J. Chem. Phys., 103 (19), 8577–8593.
[37] Ke, Q., Gong, X., Liao, S., Duan, C., and Li, L., 2022, Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations, J. Mol. Liq., 365, 120116.
[38] Kurniawan, Y.S., Fatmasari, N., Pranowo, H.D., Sholikhah, E.N., and Jumina, J., 2024, Investigation on anticancer agent against cervical and colorectal cancer cell lines: One-pot synthesis, in vitro and in silico assays of xanthone derivatives, J. Appl. Pharm. Sci., 14 (3), 145–153.
[39] Fatmasari, N., Kurniawan, Y.S., Jumina, J., Anwar, C., Priastomo, Y., Pranowo, H.D., Zulkarnain, A.K., and Sholikhah, E.N., 2022, Synthesis and in vitro assay of hydroxyxanthones as antioxidant and anticancer agents, Sci. Rep., 12 (1), 1535.
[40] Iresha, M.R., Jumina, J., Pranowo, H.D., Sholikhah, E.N., and Hermawan, F., 2022, Synthesis, cytotoxicity evaluation and molecular docking studies of xanthyl-cinnamate derivatives as potential anticancer agents, Indones. J. Chem., 22 (5), 1407–1417.
[41] Zakiah, M., Syarif, R.A., Mustofa, M., Jumina, J., Fatmasari, N., and Sholikhah, E.N., 2021, In vitro antiplasmodial, heme polymerization, and cytotoxicity of hydroxyxanthone derivatives, J. Trop. Med., 2021 (1), 8866681.
[42] Liu, J., Zhang, J., Wang, H., Liu, Z., Zhang, C., Jiang, Z., and Chen, H., 2017, Synthesis of xanthone derivatives and studies on the inhibition against cancer cells growth and synergistic combinations of them, Eur. J. Med. Chem., 133, 50–61.
[43] Yuanita, E., Pranowo, H.D., Mustofa, M., Swasono, R.T., Syahri, J., and Jumina, J., 2019, Synthesis, characterization and molecular docking of chloro-substituted hydroxyxanthone derivatives, Chem. J. Mold., 14 (1), 68–76.
[44] Tanamatayarat, P., Limtrakul, P., Chunsakaow, S., and Duangrat, C., 2003, Screening of some rubiaceous plants for cytotoxic activity against cervic carcinoma (KB-3-1) cell line, Thai J. Pharm. Sci., 27 (3), 167–172.
[45] Widiandani, T., Tandian, T., Zufar, B.D., Suryadi, A., Purwanto, B.T., Hardjono, S., and Siswandono, S., 2023, In vitro study of pinostrobin propionate and pinostrobin butyrate: Cytotoxic activity against breast cancer cell T47D and its selectivity index, J. Public Health Afr., 14 (S1), 2516.
[46] Batista, R., De Jesus Silva Júnior, A., and De Oliveira, A.B., 2009, Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Non-alkaloidal natural products, Molecules, 14 (8), 3037–3072.
[47] Xia, X., Gong, C., Zhang, Y., and Xiong, H., 2023, The history and development of HER2 inhibitors, Pharmaceuticals, 16 (10), 1450.
[48] Horimoto, Y., Ishizuka, Y., Ueki, Y., Higuchi, T., Arakawa, A., and Saito, M., 2022, Comparison of tumors with HER2 overexpression versus HER2 amplification in HER2-positive breast cancer patients, BMC Cancer, 22 (1), 242.
[49] Aman, N.A., Doukoure, B., Koffi, K.D., Koui, B.S., Traore, Z.C., Kouyate, M., and Effi, A.B., 2019, HER2 overexpression and correlation with other significant clinicopathologic parameters in Ivorian breast cancer women, BMC Clin. Pathol., 19 (1), 1.
[50] Chen, F.M., Huang, L.J., Ou-Yang, F., Kan, J.Y., Kao, L.C., and Hou, M.F., 2020, Activation of mitochondrial unfolded protein response is associated with Her2-overexpression breast cancer, Breast Cancer Res. Treat., 183, 61–70.
[51] Ibragimova, K.I.E., Geurts, S.M.E., Meegdes, M., Erdkamp, F., Heijns, J.B., Tol, J., Vriens, B.E.P., Dercksen, M.W., Aaldering, K.N.A., Pepels, M.J.A.E., van de Winkel, L., Peters, N.A.J.B., Teeuwen-Dedroog, N.J.A., Vriens, I.J.H., and Tjan-Heijnen, V.C.G., 2023, Outcomes for the first four lines of therapy in patients with HER2-positive advanced breast cancer: Results from the SONABRE registry, Breast Cancer Res. Treat., 198 (2), 239–251.
[52] Sharaf, B., Tamimi, F., Al-Abdallat, H., Khater, S., Salama, O., Zayed, A., El Khatib, O., Qaddoumi, A., Horani, M., AL-Masri, Y., Asha, W., Altalla’, B., Bani Hani, H., and Abdel-Razeq, H., 2025, Dual anti-HER2 therapy vs trastuzumab alone with neoadjuvant anthracycline and taxane in HER2-positive early-stage breast cancer: Real-world insights, Biol.: Targets Ther., 19, 59–71.
[53] Aertgeerts, K., Skene, R., Yano, J., Sang, B.C., Zou, H., Snell, G., Jennings, A., Iwamoto, K., Habuka, N., Hirokawa, A., Ishikawa, T., Tanaka, T., Miki, H., Ohta, Y., and Sogabe, S., 2011, Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein, J. Biol. Chem., 286 (21), 18756–18765.
[54] Fitria, A., Kurniawan, Y.S., Ananto, A.D., Jumina, J., Sholikhah, E.C., and Pranowo, H.D., 2025, Allyl-modified of calix[4]resorcinarene derivatives for HER2 inhibition agents: An in silico study, J. Multidiscip. Appl. Nat. Sci., 5 (2), 352–369.
[55] Sinha, S., Tam, B., and Wang, S.M., 2022, Applications of molecular dynamics simulation in protein study, Membranes, 12 (9), 844.
[56] Aier, I., Varadwaj, P.K., and Raj, U., 2016, Structural insights into conformational stability of both wild-type and mutant EZH2 receptor, Sci. Rep., 6 (1), 34984.
[57] Fatriansyah, J.F., Boanerges, A.G., Kurnianto, S.R., Pradana, A.F., Fadilah, F., and Surip, S.N., 2022, Molecular dynamics simulation of ligands from Anredera cordifolia (binahong) to the main protease (Mpro) of SARS-CoV-2, J. Trop. Med., 2022 (1), 1178228.
[58] Kurniawan, Y.S., Yudha, E., Nugraha, G., Fatmasari, N., Pranowo, H.D., Jumina, J., and Sholikhah, E.N., 2024, Molecular docking and molecular dynamic investigations of xanthone-chalcone derivatives against epidermal growth factor receptor for preliminary discovery of novel anticancer agent, Indones. J. Chem., 24 (1), 250–266.
[59] Yogaswara, R., Pranowo, H.D., Prasetyo, N., and Pulung, M.L., 2025, Investigation of new 4-benzyloxy-2-trichloromethylquinazoline derivatives as Plasmodium falciparum dihydrofolate reductase-thymidylate synthase inhibitors: QSAR, ADME, drug-likeness, toxicity, molecular docking and molecular dynamics simulation, J. Multidiscip. Appl. Nat. Sci., 5 (2), 456–486.
[60] Pulung, M.L., Swasono, R.T., Sholikhah, E.N., Yogaswara, R., Primahana, G., and Raharjo, T.J., 2025, Antiplasmodial and metabolite profiling of Hyrtios sp. sponge extract from Southeast Sulawesi marine using LC-HRMS, molecular docking, pharmacokinetic, drug-likeness, toxicity, and molecular dynamics simulation, J. Multidiscip. Appl. Nat. Sci., 5 (2), 487–508.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.












