Citric Acid and Epichlorohydrin as Crosslinking Agent on Hydrogel-Based Nanocellulose from Pine Cone Flower Potential for Wound Dressing Application

Masruri Masruri(1*), Urfa 'Uyunin Zakiyya(2), Muchammad Zainul Anwar(3), Nur Ikhtiarini(4)
(1) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(2) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(3) Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
(4) Department of Chemical Engineering, Faculty of Engineering, UPN “Veteran” Jawa Timur, Jl. Raya Rungkut Madya, Gunung Anyar, Surabaya 60294, Indonesia
(*) Corresponding Author
Abstract
Chronic wounds and bacterial infections require wound dressings with both moisture retention and antibacterial properties. This study developed a hydrogel from pine flower-derived nanocellulose crosslinked with citric acid (CA) and epichlorohydrin (ECH). Nanocellulose was characterized using TEM and PSA, confirming a size of 10–30 nm. Hydrogels were synthesized using CA and ECH as crosslinkers, and characterized via FTIR (chemical bonding), SEM (morphology), swelling tests, antibacterial assays, and UV-vis-based release studies. FTIR data confirmed successful crosslinking. SEM results revealed a porous structure ideal for wound healing; hydrogels without extract showed smoother surfaces than those with extract. ECH-crosslinked hydrogels exhibited higher swelling capacity, suitable for heavily exuding wounds. Hydrogels incorporating white dragon fruit peel extract demonstrated enhanced antibacterial activity against Staphylococcus aureus. Release studies showed controlled diffusion of active compounds, particularly in CA-crosslinked hydrogels. These findings suggest nanocellulose-based hydrogels with natural crosslinkers and plant extracts offer promising properties for wound dressing applications, combining moisture management with antibacterial functionality.
Keywords
Full Text:
Full Text PDFReferences
[1] Rodgers, K., and Jadhav, S.S., 2018, The application of mesenchymal stem cells to treat thermal and radiation burns, Adv. Drug Delivery Rev., 123, 75–81.
[2] Holmes, S.P., Rivera, S., Hooper, P.B., Slaven, J.E., and Que, S.K.T., 2022, Hydrocolloid dressing versus conventional wound care after dermatologic surgery, JAAD Int., 6, 37–42.
[3] Le, L.T.T., Giang, N.N., Chien, P.N., Trinh, X.T., Long, N.V., Anh, L.T.V., Nga, P.T., Zhang, X.R., Nam, S.Y., and Heo, C.Y., 2023, Enhancement of wound healing efficacy by chitosan-based hydrocolloid on Sprague Dawley rats, In Vivo, 37 (3), 1052–1064.
[4] Nguyen, N., Dulai, A.S., Adnan, S., Khan, Z., and Sivamani, R.K., 2025, Narrative review of the use of hydrocolloids in dermatology: Applications and benefits, J. Clin. Med., 14 (4), 1345.
[5] Zhang, W., Liu, L., Cheng, H., Zhu, J., Li, X., Ye, S., and Li, X., 2024, Hydrogel-based dressings designed to facilitate wound healing, Mater. Adv., 5 (4), 1364–1394.
[6] Chelu, M., Calderon Moreno, J.M., Musuc, A.M., and Popa, M., 2024, Natural regenerative hydrogels for wound healing, Gels, 10 (9), 547.
[7] Gounden, V., and Singh, M., 2024, Hydrogels and wound healing: Current and future prospects, Gels, 10 (1), 43.
[8] Jokar, F., Rahaiee, S., Zare, M., Nasiri Kenari, M., and Mirzakhani, N., 2023, Bioactive wound dressing using bacterial cellulose/dextran biopolymers loaded with pomegranate peel extract: Preparation, characterization and biological properties, J. Drug Delivery Sci. Technol., 84, 104461.
[9] Polverino, G., Russo, F., and D’Andrea, F., 2024, Bioactive dressing: A new algorithm in wound healing, J. Clin. Med., 13 (9), 2488.
[10] Vivcharenko, V., and Przekora, A., 2021, Modifications of wound dressings with bioactive agents to achieve improved pro-healing properties, Appl. Sci., 11 (9), 4114.
[11] Ikhtiarini, N., Kamil, M.Z., Bukit, B.F., Juliadmi, D., Prasetiyo, K.W., Fransiska, D., Sedayu, B.B., Subiyanto, B., Sulastiningsih, I.M., Rochima, E., Arivendan, A., and Syamani, F.A., 2025, Biocompatible composites based on alginate, polycaprolactone, and nanocellulose: A review, Int. J. Biol. Macromol., 311 (Pt. 1), 143423.
[12] Tudoroiu, E.E., Dinu-Pîrvu, C.E., Albu Kaya, M.G., Popa, L., Anuța, V., Prisada, R.M., and Ghica, M.V., 2021, An overview of cellulose derivatives-based dressings for wound-healing management, Pharmaceuticals, 14 (12), 1215.
[13] Afzali, M., Esfandiaribayat, N., and Boateng, J., 2025, Medicated and multifunctional composite alginate-collagen-hyaluronate based scaffolds prepared using two different crosslinking approaches show potential for healing of chronic wounds, Drug Delivery Transl. Res., 15 (7), 2483–2508.
[14] Liang, W., Ni, N., Huang, Y., and Lin, C., 2023, An advanced review: Polyurethane-related dressings for skin wound repair, Polymers, 15 (21), 4301.
[15] Niculescu, A.G., and Grumezescu, A.M., 2022, An up-to-date review of biomaterials application in wound management, Polymers, 14 (3), 421.
[16] Paneer Selvam, S., Ayyappan, S., I Jamir, S., Sellappan, L.K., and Manoharan, S., 2024, Recent advancements of hydroxyapatite and polyethylene glycol (PEG) composites for tissue engineering applications – A comprehensive review, Eur. Polym. J., 215, 113226.
[17] Yang, W., Zhu, Y., He, Y., Xiao, L., Xu, P., Puglia, D., and Ma, P., 2022, Preparation of toughened poly(lactic acid)-poly(ε-caprolactone)-lignin nanocomposites with good heat- and UV-resistance, Ind. Crops Prod., 183, 114965.
[18] Partovi, A., Khedrinia, M., Arjmand, S., and Ranaei Siadat, S.O., 2024, Electrospun nanofibrous wound dressings with enhanced efficiency through carbon quantum dots and citrate incorporation, Sci. Rep., 14 (1), 19256.
[19] Yu, P., Wei, L., Yang, Z., Liu, X., Ma, H., Zhao, J., Liu, L., Wang, L., Chen, R., and Cheng, Y., 2024, Hydrogel wound dressings accelerating healing process of wounds in movable parts, Int. J. Mol. Sci., 25 (12), 6610.
[20] Hodge, J.G., Zamierowski, D.S., Robinson, J.L., and Mellott, A.J., 2022, Evaluating polymeric biomaterials to improve next generation wound dressing design, Biomater. Res., 26 (1), 50.
[21] de Carvalho, R.S.F., Mahnke, L.C., Palácio, S.B., Barbosa, W.T., Hodel, K.V.S., Barbosa, J.D.V., Melo, F.A.D., Chorilli, M., Meneguin, A.B., Pinto, F.C.M., de Morais, M.A., and Aguiar, J.L.A., 2025, Bacterial cellulose hydrogel produced by Gluconacetobacter hansenii using sugarcane molasses as medium: Physicochemical characterization for wound healing applications, Carbohydr. Polym. Technol. Appl., 9, 100632.
[22] Zakiyya, U., ‘Uyunin, U., Masruri, M., Ningsih, Z., and Srihardyastutie, A., 2020, Sonication-assisted pine cone flower cellulose hydrolysis using formic acid, IOP Conf. Ser.: Mater. Sci. Eng., 833 (1), 012001.
[23] Cindradewi, A.W., Bandi, R., Park, C.W., Park, J.S., Lee, E.A., Kim, J.K., Kwon, G.J., Han, S.Y., and Lee, S.H., 2021, Preparation and characterization of cellulose acetate film reinforced with cellulose nanofibril, Polymers, 13 (17), 2990.
[24] Ikhtiarini, N., Masruri, M., Ulfa, S.M., Rollando, R., and Widodo, N., 2024, Antibacterial activity of hydrogels produced from nanocellulose derivatives for controlled drug delivery, Trop. J. Nat. Prod. Res., 8 (5), 7068–7072.
[25] Akakuru, O.U., and Isiuku, B.O., 2017, Chitosan hydrogels and their glutaraldehyde-crosslinked counterparts as potential drug release and tissue engineering systems – Synthesis, characterization, swelling kinetics and mechanism, J. Phys. Chem. Biophys., 7 (6), 256.
[26] Distantina, S., Rochmadi, R., Fahrurrozi, M., and Wiratni, W., 2013, Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel, Eng. J., 17 (3), 57–66.
[27] Musa, B.H., and Hameed, N.J., 2021, Effect of Effect of crosslinking agent (glutaraldehyde) on the mechanical properties of (PVA/starch) blend and (PVA/PEG) binary blend films, J. Phys.: Conf. Ser., 1795 (1), 012064.
[28] Mali, K.K., Ghorpade, V.S., Dias, R.J., and Dhawale, S.C., 2023, Synthesis and characterization of citric acid crosslinked carboxymethyl tamarind gum-polyvinyl alcohol hydrogel films, Int. J. Biol. Macromol., 236, 123969.
[29] Poudel, R., Dutta, N., and Karak, N., 2023, A mechanically robust biodegradable bioplastic of citric acid modified plasticized yam starch with anthocyanin as a fish spoilage auto-detecting smart film, Int. J. Biol. Macromol., 242 (Pt. 2), 125020.
[30] Xu, D., Hui, Y.Y., Zhang, W., Zhao, M.N., Gao, K., Tao, Xing-R., and Wang, J.W., 2024, Genipin-crosslinked hydrogels for food and biomedical applications: A scientometric review, Int. J. Biol. Macromol., 282, 137478.
[31] Wang, L., Ding, X., He, X., Tian, N., Ding, P., Guo, W., Okoro, O.V., Sun, Y., Jiang, G., Liu, Z., Shavandi, A., and Nie, L., 2024, Fabrication and properties of hydrogel dressings based on genipin crosslinked chondroitin sulfate and chitosan, Polymers, 16 (20), 2876.
[32] Hendra, R., Masdeatresa, L., Abdulah, R., and Haryani, Y., 2019, Antibacterial activity of red dragon peel (Hylocereus polyrhizus) pigment, J. Phys.: Conf. Ser., 1351 (1), 012042.
[33] Nur, M.A., Uddin, M.R., Meghla, N.S., Uddin, M.J., and Amin, M.Z., 2023, In vitro anti-oxidant, anti-inflammatory, anti-bacterial, and cytotoxic effects of extracted colorants from two species of dragon fruit (Hylocereus spp.), Food Chem. Adv., 2, 100318.
[34] Zanoni, I., Keller, J.G., Sauer, U.G., Müller, P., Ma-Hock, L., Jensen, K.A., Costa, A.L., and Wohlleben, W., 2022, Dissolution rate of nanomaterials determined by ions and particle size under lysosomal conditions: Contributions to standardization of simulant fluids and analytical methods, Chem. Res. Toxicol., 35 (6), 963–980.
[35] Khaleghi, M., Ahmadi, E., Khodabandeh Shahraki, M., Aliakbari, F., and Morshedi, D., 2020, Temperature-dependent formulation of a hydrogel based on hyaluronic acid–polydimethylsiloxane for biomedical applications, Heliyon, 6 (3), e03494.
[36] Kowalczuk, D., and Pitucha, M., 2019, Application of FTIR method for the assessment of immobilization of active substances in the matrix of biomedical materials, Materials, 12 (18), 2972.
[37] Hossain, M.R., Biplob, A.I., Sharif, S.R., Bhuiya, A.M., and Sayem, A.S.M., 2023, Antibacterial activity of green synthesized silver nanoparticles of Lablab purpureus flowers extract against human pathogenic bacteria, Trop. J. Nat. Prod. Res., 7 (8), 3647–3651.
[38] Nicu, R., Ciolacu, F., and Ciolacu, D.E., 2021, Advanced functional materials based on nanocellulose for pharmaceutical/medical applications, Pharmaceutics, 13 (8), 1125.
[39] de Lima, G.G., Ferreira, B.D., Matos, M., Pereira, B.L., Nugent, M.J.D., Hansel, F.A., and Magalhães, W.L.E., 2020, Effect of cellulose size-concentration on the structure of polyvinyl alcohol hydrogels, Carbohydr. Polym., 245, 116612.
[40] Li, B., Xu, C., Kronlund, D., Määttänen, A., Liu, J., Smått, J.H., Peltonen, J., Willför, S., Mu, X., and Xu, W.Y., 2015, Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation, Carbohydr. Polym., 133, 605–612.
[41] Sun, Y., Lin, L., Pang, C., Deng, H., Peng, H., Li, J., He, B., and Liu, S., 2007, Hydrolysis of cotton fiber cellulose in formic acid, Energy Fuels, 21 (4), 2386–2389.
[42] Jacob, S., Nair, A.B., Shah, J., Sreeharsha, N., Gupta, S., and Shinu, P., 2021, Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management, Pharmaceutics, 13 (3), 357.
[43] Guo, B., Chen, W., and Yan, L., 2013, Preparation of flexible, highly transparent, cross-linked cellulose thin film with high mechanical strength and low coefficient of thermal expansion, ACS Sustainable Chem. Eng., 1 (11), 1474–1479.
[44] Udoetok, I.A., Dimmick, R.M., Wilson, L.D., and Headley, J.V., 2016, Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution, Carbohydr. Polym., 136, 329–340.
[45] Ismail, H., Irani, M., and Ahmad, Z., 2013, Starch-based hydrogels: Present status and applications, Int. J. Polym. Mater. Polym. Biomater., 62 (7), 411–420.
[46] Islam, T., Danishuddin, D., Tamanna, N.T., Matin, M.N., Barai, H.R., and Haque, M.A., 2024, Resistance mechanisms of plant pathogenic fungi to fungicide, environmental impacts of fungicides, and sustainable solutions, Plants, 13 (19), 2737.
[47] Lacaran, J.V.T., Narceda, R.J., Bilo, J.A.V., and Leaño Jr., J.L., 2021, Citric acid crosslinked nanofibrillated cellulose from banana (Musa acuminata × balbisiana) pseudostem for adsorption of Pb2+ and Cu2+ in aqueous solutions, Cellul. Chem. Technol., 55 (3-4), 403–415.
[48] Muharam, S., Yuningsih, L.M., and Sumitra, M.R., 2017, Characterization of superabsorbent hydrogel based on epichlorohydrin crosslink and carboxymethyl functionalization of cassava starch, AIP Conf. Proc., 1862 (1), 030083.
[49] Sharmin, N., Rosnes, J.T., Prabhu, L., Böcker, U., and Sivertsvik, M., 2022, Effect of citric acid crosslinking on the mechanical, rheological and barrier properties of chitosan, Molecules, 27 (16), 5118.
[50] Mota, L.O., and Gimenez, I.F., 2023, Cellulose-based materials crosslinked with epichlorohydrin: A mini review, Rev. Virtual Quim., 15 (1), 159–170.
[51] Dharmalingam, K., and Anandalakshmi, R., 2019, Fabrication, characterization and drug loading efficiency of citric acid crosslinked NaCMC-HPMC hydrogel films for wound healing drug delivery applications, Int. J. Biol. Macromol., 134, 815–829.
[52] Nasution, H., Harahap, H., Dalimuthe, N.F., Ginting, M.H.S., Jaafar, M., Tan, O.O.H., Aruan, H.K., and Herfananda, A.L., 2022, Hydrogel and effects of crosslinking agent on cellulose-based hydrogels: A review, Gels, 8 (9), 568.
[53] Keirudin, A.A., Zainuddin, N., and Yusof, N.A., 2020, Crosslinked carboxymethyl sago starch/citric acid hydrogel for sorption of Pb2+, Cu2+, Ni2+ and Zn2+ from aqueous solution, Polymers, 12 (11), 2465.
[54] Zhao, Y., He, M., Zhao, L., Wang, S., Li, Y., Gan, L., Li, M., Xu, L., Chang, P.R., Anderson, D.P., and Chen, Y., 2016, Epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films as biocompatible and biodegradable implants for tissue engineering, ACS Appl. Mater. Interfaces, 8 (4), 2781–2795.
[55] Alzaben, F., Fat’hi, S., Elbehiry, A., Alsugair, M., Marzouk, E., Abalkhail, A., Almuzaini, A.M., Rawway, M., Ibrahem, M., Sindi, W., Alshehri, T., and Hamada, M., 2022, Laboratory diagnostic methods and antibiotic resistance patterns of Staphylococcus aureus and Escherichia coli strains: An evolving human health challenge, Diagnostics, 12 (11), 2645.

Article Metrics


Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.