Identification of Anti-Inflammatory Components from Launaea sarmentosa Using In Vitro Cell Model
Thanh Quoc Chau Nguyen(1*), Khang Thanh Vo(2), Cua Dinh Duong(3), Toan Phu Huynh(4), Lieu Thi Thuy Ca(5), Giao Huynh Dang(6)
(1) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(2) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam; Medicinal Chemistry Laboratory, CTU Hi-tech Building, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(3) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam; Medicinal Chemistry Laboratory, CTU Hi-tech Building, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(4) Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam; Medicinal Chemistry Laboratory, CTU Hi-tech Building, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(5) Medicinal Chemistry Laboratory, CTU Hi-tech Building, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(6) College of Engineering, Can Tho University, Campus II, 3/2 Street, Can Tho 94000, Vietnam
(*) Corresponding Author
Abstract
Launaea sarmentosa (Willd.) Kuntze, a medicinal herb known for treating inflammatory diseases, was examined for its anti-inflammatory compounds to identify novel therapies. This study indicated that hexane and ethyl acetate fractional extracts significantly reduced NO secretion in LPS-stimulated RAW264.7 macrophages, indicating the presence of potential anti-inflammatory compounds. Additionally, four anti-inflammatory compounds, including taraxasteryl acetate (1), esculetin (2), pyrimidine-2,4-dione (3), and 5-hydroxypryrolidin-2-one (4), were isolated, and their structures were characterized using 1D and 2D-NMR. This study marked the first report of taraxasteryl acetate, pyrimidine-2,4-dione, and 5-hydroxypryrolidin-2-one being isolated from this species. Furthermore, these compounds exerted their anti-inflammatory role by inhibiting NO production and TNF-α expression. Thus, this study contributes to identifying anti-inflammatory constituents from L. sarmentosa and highlights a potential approach for developing phytotherapeutic agents.
Keywords
References
[1] Shubhangi, K., Jadhav, R.S., and Vikhe, S.R., 2022, Phytochemical and pharmacological activities of Launaea sarmentosa: A review, Res. J. Pharmacogn. Phytochem., 14 (2), 132–135.
[2] Nguyen, T.Q.C., Binh, T.D., Kusunoki, R., Pham, T.L.A., Nguyen, Y.D.H., Nguyen, T.T., Kanaori, K., and Kamei, K., 2020, Effects of Launaea sarmentosa extract on Lipopolysaccharide-induced inflammation via suppression of NF-κB/ MAPK signaling and Nrf2 activation, Nutrients, 12 (9), 2586.
[3] Gunde, M.C., Wani, J.S., and Pethe, A.M., 2022, Pharmacognostic and phytochemical studies on leaves of Launaea sarmentosa (Willd.) Schultz - Bip. Ex Kuntze, Int. J. Ayurvedic Med., 13 (3), 759–763.
[4] Das, S., Priyanka, K.R., Prabhu, K., Vinayagam, R., Rajaram, R., and Kang, S.G., 2024, Anticandidal properties of Launaea sarmentosa among the salt marsh plants collected from Palk Bay and the Gulf of Mannar Coast, Southeastern India, Antibiotics, 13 (8), 748.
[5] Tran, D.Q., Pham, A.C., Nguyen, T.T.T., Vo, T.C., Vu, H.D., Ho, G.T., and Mohsin, S.M., 2024, Growth, physiological, and biochemical responses of a medicinal plant Launaea sarmentosa to salinity, Horticulturae, 10 (4), 388.
[6] Nguyen, T.Q.C., Hong, T.T., Khang, V.T., Ho, T.N.Y., Pham, D.T., Giao, D.H., Tu, T.T.T., and Kamei, K., 2024, Anti-inflammatory Constituents isolated from Launaea sarmentosa against infection by LPS-stimulated macrophages, Rec. Nat. Prod., 18 (6), 663–673.
[7] Raju, G.S., RahmanMoghal, M.M., Hossain, M.S., Hassan, M., Bilah, M., Ahamed, S.K., and Rana, M., 2014, Assessment of pharmacological activities of two medicinal plant of Bangladesh: Launaea sarmentosa and Aegialitis rotundifolia Roxb in the management of pain, pyrexia, and inflammation, Biol. Res., 47 (1), 55.
[8] Nigam, M., Mishra, A.P., Deb, V.K., Dimri, D.B., Tiwari, V., Bungau, S.G., Bungau, A.F., and Radu, A.F., 2023, Evaluation of the association of chronic inflammation and cancer: Insights and implications, Biomed. Pharmacother., 164, 115015.
[9] Novoa, C., Salazar, P., Cisternas, P., Gherardelli, C., Vera-Slazar, R., Zolezzi, J.M., and Inestrosa, N.C., 2022, Inflammation context in Alzheimer’s disease, a relationship intricate to define, Biol. Res., 55 (1), 39.
[10] Lee, J.W., Chun, W., Lee, H.J., Min, J.H., Kim, S.M., Seo, J.Y., Ahn, K.S., and Oh, S.R., 2021, The role of macrophages in the development of acute and chronic inflammatory lung diseases, Cells, 10 (4), 897.
[11] Oishi, Y., and Manabe, I., 2018, Macrophages in inflammation, repair and regeneration, Int. Immunol., 30 (11), 511–528.
[12] Ahsan, H., Ayub, M., Irfan, H.M., Saleem, M., Anjum, I., Haider, I., Asif, A., Abbas, S.Q., and ul Hulassan, S.S., 2023, Tumor necrosis factor-alpha, prostaglandin-E2 and interleukin-1β targeted anti-arthritic potential of fluvoxamine: Drug repurposing, Environ. Sci. Pollut. Res., 30 (6), 14580–14591.
[13] Singh, J., Lee, Y., and Kellum, J.A., 2022, A new perspective on NO pathway in sepsis and ADMA lowering as a potential therapeutic approach, Crit. Care, 26 (1), 246.
[14] Wilmes, V., Scheiper, S., Roehr. W., Niess, C., Kippenberger, S., Steinhorst, K., Verhoff, M.A., and Kauferstein, S., 2020, Increased inducible nitric oxide synthase (iNOS) expression in human myocardial infarction, Int. J. Legal Med., 134 (2), 575–581.
[15] Zamora, R., Vodovotz, Y., and Billiar, T.R., 2000, Inducible nitric oxide synthase and inflammatory diseases, Mol. Med., 6 (5), 347–373.
[16] Lee, M., Rey, K., Besler, K., Wang, C., and Choy, J., 2017, Immunobiology of nitric oxide and regulation of inducible nitric oxide synthase, Results Probl. Cell Differ., 62, 181–207.
[17] Liao, W., Ye, T., and Liu, H., 2019, Prognostic value of inducible vitric oxide synthase (iNOS) in human cancer: A systematic review and meta-analysis, BioMed Res. Int., 2019 (1), 6304851.
[18] Shah, V., Lyford, G., Gores, G., and Farrugia, G., 2004, Nitric oxide in gastrointestinal health and disease, Gastroenterology, 126 (3), 903–913.
[19] Watanabe, S., Alexander, M., Misharin, A.V., and Budinger, G.R.S., 2019, The role of macrophages in the resolution of inflammation, J. Clin. Invest., 129 (7), 2619–2628.
[20] Yan, W., Yan, Y., Luo, X., Dong, Y., Liang, G., Miao, H., Huang, Z., and Jiang, H., 2024, Lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells is inhibited by microRNA-494-3p via targeting lipoprotein-associated phospholipase A2, Eur. J. Trauma Emerg. Surg., 50 (6), 3289–3298.
[21] Lee, S.J., Lee, U.S., Kim, W.J., and Moon, S.K., 2011, Inhibitory effect of esculetin on migration, invasion and matrix metalloproteinase-9 expression in TNF-α-induced vascular smooth muscle cells, Mol. Med. Rep., 4 (2), 337–341.
[22] Liu, C., Lei, S., Cai, T., Cheng, Y., Bai, J., Fu, W., and Huang, M., 2023, Inducible nitric oxide synthase activity mediates TNF-α-induced endothelial cell dysfunction, Am. J. Physiol. Cell Physiol., 325 (3), C780–C795.
[23] Lee, S., Han, S., Kim, H.M., Lee, J.M., Mok, S.Y., and Lee, S., 2011, Isolation and identification of phytochemical constituents from Taraxacum coreanum, J. Korean Soc. Appl. Biol. Chem., 54 (1), 73–78.
[24] Pérez-García, F., Marín, E., Parella, T., Adzet, T., and Cañigueral, S., 2005, Activity of taraxasteryl acetate on inflammation and heat shock protein synthesis, Phytomedicine, 12 (4), 278–284.
[25] Zhang, X., Xiong, H., and Liu, L., 2012, Effects of taraxasterol on inflammatory responses in lipopolysaccharide-induced RAW264.7 macrophages, J. Ethnopharmacol., 141 (1), 206–211.
[26] Zhao, C.N., Yao, Z.L., Yang, D., Ke, J., Wu, Q.L., Li, J.K., and Zhou, X.D., 2020, Chemical constituents from Fraxinus hupehensis and their antifungal and herbicidal activities, Biomolecules, 10 (1), 74.
[27] Wang, F., Jia, Q.W., Yuan, Z.H., Lv, L.Y., Li, M., Jiang, Z.B., Liang, D.L., and Zhang, D.Z., 2019, An anti-inflammatory C-stiryl iridoid from Camptosorus sibiricus Rupr., Fitoterapia, 134, 378–381.
[28] Hu, J., Zhao, L., Li, N., Yang, Y., Qu, T., Ren, H., Cui, X., Tao, H., Chen, Z., and Peng, Y., 2022, Investigation of the active ingredients and pharmacological mechanisms of Porana sinensis Hemsl. against rheumatoid arthritis using network pharmacology and experimental validation, PLoS One, 17 (3), e0264786.
[29] Xiu, Z., Li, Y., Fang, J., Han, J., Li, S., Li, Y., Yang., X., Song, G., Li, Y., Jin, N., Zhu, Y., Sun, L., and Li, X., 2023, Inhibitory effects of esculetin on liver cancer through triggering NCOA4p-mediation ferritinophagy in vivo and in vitro, J. Hepatocell. Carcinoma, 10, 611–629.
[30] Li, H., Lin, J., Bai, B., Bo, T., He, Y., Fan, S., and Zhang, J., 2023, Study on purification, identification and antioxidant of flavonoids extracted from Perilla leaves, Molecules, 28 (21), 7273.
[31] El-Dien, O.G., Shawky, E., Aly, A.H., Abdallah, R.M., and Abdel-Salam, N.A., 2014, Phytochemical and biological investigation of Spergularia marina (L.) Griseb. growing in Egypt, Nat. Prod. Sci., 20 (3), 52–159.
[32] Staubmann, R., Schubert-Zsilavecz, M., Hiermann, A., and Kartnig, T., 1999, A complex of 5-hydroxypyrrolidin-2-one and pyrimidine-2,4-dione isolated from Jatropha curcas, Phytochemistry, 2 (26), 237–238.
[33] Jeelan Basha, N., Basavarajaiah, S.M., and Shyamsunder, K., 2022, Therapeutic potential of pyrrole and pyrrolidine analogs: An update, Mol. Diversity, 26 (5), 2915–2937.
Article Metrics
Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.












