Application of the Sono-Fenton Process for Doxycycline Degradation Using Taguchi’s Experimental Designs

Nabila Boucherit(1*), Barki Mohamed(2), Achouak Madani(3), Abdelkarim Brahimi(4), Nassiba Mimi(5)
(1) Department of Material Sciences, Faculty of Sciences, University of Medea, Urban Pole, Medea 26000, Algeria; Laboratory of BioMaterials and Transport Phenomena, Urban Pole, Medea 26000, Algeria
(2) University of Tizi Ouzou, Tizi Ouzou 15000, Algeria
(3) Laboratory of BioMaterials and Transport Phenomena, Urban Pole, Medea 26000, Algeria
(4) El-Birine Research Center (CRNB), COMENA, BP180 Ain Oussera, Djelfa 17000, Algeria
(5) Department of Material Sciences, Faculty of Sciences, University of Medea, Urban Pole, Medea 26000, Algeria
(*) Corresponding Author
Abstract
Keywords
Full Text:
Full Text PDFReferences
[1] Grenni, P., Ancona, V., and Barra Caracciolo, A., 2018, Ecological effects of antibiotics on natural ecosystems: A review, Microchem. J., 136, 25–39.
[2] Xu, L., Zhang, H., Xiong, P., Zhu, Q., Liao, C., and Jiang, G., 2021, Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review, Sci. Total Environ., 753, 141975.
[3] Antón-Herrero, R., García-Delgado, C., Alonso-Izquierdo, M., García-Rodríguez, G., Cuevas, J., and Eymar, E., 2018, Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent, Appl. Clay Sci., 160, 162–172.
[4] Han, T., Liang,Y., Wu, Z., Zhang, L., Liu, Z., Li, Q., Chen, X., Guo, W., Jiang, L., Pan, F., Ge, S., Mi, Z., Liu, Z., Huang, H., Li, X., Zhou, J., Li, Y., Wang, J., Zhang, Z., Tang, Y., Yang, L., and Wu, M., 2019, Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass, J. Hazard. Mater., 380, 120885.
[5] Warner, A.J., Hathaway-Schrader, J.D., Lubker, R., Davies, C., and Novince, C.M., 2022, Tetracyclines and bone: Unclear actions with potentially lasting effects, Bone, 159, 116377.
[6] Graber, E.M., 2021, Treating acne with the tetracycline class of antibiotics: A review, Dermatol. Rev., 2 (6), 321–330.
[7] Aniagor, C.O., Igwegbe, C.A., Ighalo, J.O., and Oba, S.N., 2021, Adsorption of doxycycline from aqueous media: A review, J. Mol. Liq., 334, 116124.
[8] Borghi, A.A., Silva, M.F., Al Arni, S., Converti, A., and Palma, M.S.A., 2015, Doxycycline degradation by the oxidative Fenton process, J. Chem., 2015 (1), 492030.
[9] Jiang, Y., Ran, J., Mao, K. Yang, X., Zhong, L., Yang, C., Feng, X., and Zhang, H., 2022, Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments, Ecotoxicol. Environ. Saf., 236, 113464.
[10] Baran, W., and Adamek, E., 2023, Degradation of veterinary antibiotics by Fenton process: Products identification and toxicity assessment, Chemosphere, 341, 139854.
[11] Moradi, M., Elahinia, A., Vasseghian, Y., Dragoi, E.N., Omidi, F., and Mousavi Khaneghah, A., 2020, A review on pollutants removal by sono-photo-Fenton processes, J. Environ. Chem. Eng., 8 (5), 104330.
[12] Liu, P., Wu, Z., Abramova, A.V., and Cravotto, G., 2021, Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review, Ultrason. Sonochem., 74, 105566.
[13] Malakootian, M., and Asadzadeh, S.N., 2020, Oxidative removal of tetracycline by sono Fenton-like oxidation process in aqueous media, Desalin. Water Treat., 193, 392–401.
[14] Cárdenas Sierra, R.S., Zúñiga-Benítez, H., and Peñuela, G.A., 2021, Elimination of cephalexin and doxycycline under low frequency ultrasound, Ultrason. Sonochem., 79, 105777.
[15] Wang, C., and Huang, B.M., 2017, Degradation of tetracycline by advanced oxidation processes: Sono-Fenton and ozonation processes, Desalin. Water Treat., 96, 161–168.
[16] Yousefi, Z., Zafarzadeh, A., and Ghezel, A., 2018, Application of Taguchi’s experimental design method for optimization of Acid Red 18 removal by electrochemical oxidation process, Environ. Health Eng. Manage. J., 5, 241–248.
[17] Nandhini, M., Suchithra, B., Saravanathamizhan, R., and Prakash, D.G., 2014, Optimization of parameters for dye removal by electro-oxidation using Taguchi design, J. Electrochem. Sci. Eng., 4 (4), 227–234.
[18] Paliy, O., and Shankar, V., 2016, Application of multivariate statistical techniques in microbial ecology, Mol. Ecol., 25 (5), 1032–1057.
[19] Morshed, M.N., Pervez, M.N., Behary, N., Bouazizi, N., Guan, J., and Nierstrasz, V.A., 2020, Statistical modeling and optimization of heterogeneous Fenton-like removal of organic pollutant using fibrous catalysts: A full factorial design, Sci. Rep., 10 (1), 16133.
[20] Sohrabi, M.R., Khavaran, A., Shariati, S., and Shariati, S., 2017, Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design, Arabian J. Chem., 10, S3523–S3531.
[21] Barragán-Trinidad, M., Guadarrama-Pérez, O., Guillén-Garcés, R.A., Bustos-Terrones, V., Trevino-Quintanilla, L.G., and Moeller-Chávez, G., 2023, The Grey–Taguchi method, a statistical tool to optimize the photo-Fenton process: A review, Water, 15 (15), 2685.
[22] Adar, E., 2020, Optimization of triple dye mixture removal by oxidation with Fenton, Int. J. Environ. Sci. Technol., 17 (11), 4431–4440.
[23] Fernández-López, J.A., Angosto, J.M., Roca, M.J., and Doval Miñarro, M., 2019, Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke, Sci. Total Environ., 653, 55–63.
[24] Aziri, S., and Meziane, S., 2017, Optimization of process parameters for Cr(VI) removal by seed powder of prickly pear (Opuntia ficus-indica L.) fruits using Taguchi method, Desalin. Water Treat., 81, 118–122.
[25] Boucherit, N., Abouseoud, M., and Adour, L., 2018, Direct yellow degradation by combined Fenton-enzymatic process, Nova Biotechnol. Chim., 17 (2), 160–171.
[26] Hsieh, L.L., Kang, H.J., Shyu, H.L., and Chang, C.Y., 2009, Optimal degradation of dye wastewater by ultrasound/Fenton method in the presence of nanoscale iron, Water Sci. Technol., 60 (5), 1295–1301.
[27] Salea, R., Widjojokusumo, E., Hartanti, A.W., Veriansyah, B., and Tjandrawinata, R.R., 2013, Supercritical fluid carbon dioxide extraction of Nigella sativa (black cumin) seeds using Taguchi method and full factorial design, Biochem. Compd., 1, 1.
[28] Ravindran, B., Kumari, S.K.S., Stenstrom, T.A., and Bux, F., 2016, Evaluation of phytotoxicity effect on selected crops using treated and untreated wastewater from different configurative domestic wastewater plants, Environ. Technol., 37 (14), 1782–1789.
[29] Wang, C., and Jian, J.J., 2015, Degradation and detoxicity of tetracycline by an enhanced sonolysis, J. Water Environ. Nanotechnol., 13 (4), 325–334.
[30] Bensaibi, F., Chabani, M., Bouafia, S., and Djelal, H., 2023, Doxycycline removal by solar photo-fenton on a pilot-scale composite parabolic collector (CPC) reactor, Processes, 11 (8), 2363.
[31] Yildiz, S., Mihçiokur, H., and Olabi, A., 2023, Experimental study of oxytetracycline degradation using Fenton-like processes, Int. J. Environ. Sci. Technol., 20 (10), 11049–11060.
[32] Sruthi, P.S., and Shanmugasundaram, S., 2022, Optimization of process parameters by Taguchi method for the development of biosensor for the detection of acrylamide in fried foods, Pharma Innovation, 11 (10S), 4–10.
[33] Nawaz, S., Siddique, M., Khan, R., Riaz, N., Waheed, U., Shahzadi, I., and Ali, A., 2022, Ultrasound-assisted hydrogen peroxide and iron sulfate mediated Fenton process as an efficient advanced oxidation process for the removal of Congo red dye, Pol J Environ Stud., 31 (3), 2749–2761.
[34] Boucherit, N., Hanini, S., Ibrir, A., Laidi, M., and Fissa, M., 2024, Prediction of doxycycline removal by photo-Fenton process using an artificial neural network - multilayer perceptron model, Chem. Ind. Chem. Eng. Q., 31 (1), 13–21.
[35] Spina-Cruz, M., Maniero, M.G., and Guimarães, J.R., 2019, Advanced oxidation processes on doxycycline degradation: Monitoring of antimicrobial activity and toxicity, Environ. Sci. Pollut. Res., 26 (27), 27604–27619.
[36] Hong, P., Li, Y., He, J., Saeed, A., Zhang, K., Wang, C., Kong, L., and Liu, J., 2020, Rapid degradation of aqueous doxycycline by surface CoFe2O4/H2O2 system: Behaviors, mechanisms, pathways and DFT calculation, Appl. Surf. Sci., 526, 146557.
[37] Bolobajev, J., Trapido, M., and Goi, A., 2016, Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition, Chemosphere, 153, 220–226.
[38] Berdini, F., Otalvaro, J.O., Avena, M., and Brigante, M., 2022, Photodegradation of doxycycline in water induced by TiO2-MCM-41. Kinetics, TOC evolution and reusability, Results Eng., 16, 100765.
[39] Pulicharla, R., Brar, S.K., Rouissi, T., Auger, S., Drogui, P., Verma, M., and Surampalli, R.Y., 2017, Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication, Ultrason. Sonochem., 34, 332–342.

Article Metrics


Copyright (c) 2025 Indonesian Journal of Chemistry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.