Green Synthesis of Zinc Oxide Nanoparticles Using Centella asiatica (L.) Urb. Extract: Characteristics and Applications

https://doi.org/10.22146/ijc.101359

Kim Ngan Thi Tran(1*), Khanh Van Tran Le(2), Cat Thuyen Ngoc Vo(3), Cat Nguyen Ngoc Vo(4), Danh Hoang Pham(5), Tuu Thi Tran(6)

(1) Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
(2) Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
(3) Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Vietnam
(4) Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Vietnam
(5) Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
(6) Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
(*) Corresponding Author

Abstract


Centella asiatica is one of the popular plant sources used in green synthesis application due to its antibacterial and cell regeneration stimulating properties. The objective of studying the synthesis process of ZnO nanoparticles in pennywort extract is to analyze the structure and morphology of materials using modern analytical methods. ZnO nanoparticles are used to remove CIP antibiotics in wastewater and are intended for application in cosmetic products. The results of the adsorption process to remove the antibiotic ciprofloxacin after 90 min, with an adsorption dose of 0.005 g L−1, an initial concentration of 100 mg L−1 in a pH 6 environment, showed an adsorption capacity of 152.93 mg g−1. The adsorption data followed the pseudo-second-order adsorption kinetic model and the Dubinin-Radushkevich adsorption isotherm model according to the non-linear regression method. The synthetic ZnO nanoparticles in a skincare mask product application with an SPF index of 14.12 and sun protection ability of 93.92% were evaluated.


Keywords


zinc oxide nanoparticles; adsorption; cosmetic; green synthesis; kinetics; isotherms

Full Text:

Full Text PDF


References

[1] Hasnidawani, J.N., Azlina, H.N., Norita, H., Bonnia, N.N., Ratim, S., and Ali, E.S., 2016, Synthesis of ZnO nanostructures using sol-gel method, Procedia Chem., 19, 211–216.

[2] Madathil, A.N.P., Vanaja, K.A., and Jayaraj, M.K., 2007, Synthesis of ZnO nanoparticles by hydrothermal method, Proc. SPIE, 6639, 66390J.

[3] Ghorbani, H.R., Mehr, F.P., Pazoki, H., and Rahmani, B.M., 2015, Synthesis of ZnO nanoparticles by precipitation method, Orient. J. Chem., 31 (2), 1219–1221.

[4] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., and Muller, R.N., 2008, Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 108 (6), 2064–2110.

[5] Agarwal, H., Venkat Kumar, S., and Rajeshkumar, S., 2017, A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach, Resour.-Effic. Technol., 3 (4), 406–413.

[6] Upadhyaya, H., Shome, S., Sarma, R., Tewari, S., Bhattacharya, M.K., and Panda, S.K., 2018, Green synthesis, characterization and antibacterial activity of ZnO nanoparticles, Am. J. Plant Sci., 9 (6), 1279–1291.

[7] Fakhari, S., Jamzad, M., and Kabiri Fard, H., 2019, Green synthesis of zinc oxide nanoparticles: a comparison, Green Chem. Lett. Rev., 12 (1), 19–24.

[8] Mohammadi, C., Mahmud, S.A., Abdulla, S.M., and Mirzaei, Y., 2017, Green synthesis of ZnO nanoparticles using the aqueous extract of Euphorbia petiolata and study of its stability and antibacterial properties, Morrocan J. Chem., 5 (3), 476–484.

[9] Akintelu, S.A., and Folorunso, A.S., 2020, A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and Its Biomedical Applications, Bionanoscience, 10 (4), 848–863.

[10] Nayak, S., Chaudhari, A., and Vaidhun, B., 2020, A review of zinc oxide nanoparticles: an evaluation of their synthesis, characterization and ameliorative properties for use in the food, pharmaceutical and cosmetic industries, J. Excipients Food Chem., 11 (4), 2020.

[11] Sood, R., Darshitha, D., Mahesh, A.R., Rathore, S.S., and Jenita, J.L., 2023, Synthesis of zinc oxide nanoparticles using Centella asiatica, Adv. Pharmacol. Pharm., 11 (4), 270–278.

[12] Jayachandran, A., Aswathy, T.R., and Nair, A.S., 2021, Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract, Biochem. Biophys. Rep., 26, 100995.

[13] Soto-Robles, C.A., Luque, P.A., Gómez-Gutiérrez, C.M., Nava, O., Vilchis-Nestor, A.R., Lugo-Medina, E., Ranjithkumar, R., and Castro-Beltrán, A., 2019, Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles, Results Phys., 15, 102807.

[14] Darvishi, E., Kahrizi, D., and Arkan, E., 2019, Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods, J. Mol. Liq., 286, 110831.

[15] Rajini, K.P., Christie, C.A., Lisy, L., Alwin, T., and Sheeba, M.M., 2022, Green synthesis and characterization of zinc oxide nanoparticle using Centella asiatica leaf extract, IJCRT, 10 (2), 505–509.

[16] Doan Thi, T.U., Nguyen, T.T., Thi, Y.D., Ta Thi, K.H., Phan, B.T., and Pham, K.N., 2020, Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities, RSC Adv., 10 (40), 23899–23907.

[17] Pavan Kumar, M.A., Suresh, D., and Sneharani, A.H., 2021, Centella asiatica mediated facile green synthesis of nano zinc oxide and its photo-catalytic and biological properties, Inorg. Chem. Commun., 133, 108865.

[18] Sadiq, H., Sher, F., Sehar, S., Lima, E.C., Zhang, S., Iqbal, H.M.N., Zafar, F., and Nuhanović, M., 2021, Green synthesis of ZnO nanoparticles from Syzygium cumini leaves extract with robust photocatalysis applications, J. Mol. Liq., 335, 116567.

[19] Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., and Lightfoot, D.A., 2017, Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts, Plants, 6 (4), 42.

[20] Nobossé, P., Fombang, E.N., Singh, D., and Mbofung, C.M.F., 2021, Nanoencapsulation of antioxidant-rich fraction of roasted Moringa oleifera L. leaf extract: physico-chemical properties and in vitro release mechanisms, Food Nutr. Sci., 12 (9), 915–936.

[21] Mathavaraj, S., and Sabu, K.K., 2021, Genetic status of Centella asiatica (L.) Urb. (Indian pennywort): A review, Curr. Bot., 12, 150–160.

[22] Belwal, T., Andola, H.C., Atanassova, M.S., Joshi, B., Suyal, R., Thakur, S., Bisht, A., Jantwal, A., Bhatt, I.D., and Rawal, R.S., 2019, “Gotu Kola (Centella asiatica)” in Nonvitamin and Nonmineral Nutritional Supplements, Eds. Nabavi, S.M., and Silva, A.S., Academic Press, Cambridge, MA, US, 265–275.

[23] Pham, H.N.T., Tang Nguyen, V., Van Vuong, Q., Bowyer, M.C., and Scarlett, C.J., 2017, Bioactive compound yield and antioxidant capacity of Helicteres hirsuta Lour. stem as affected by various solvents and drying methods, J. Food Process. Preserv., 41 (1), e12879.

[24] Reis Mansur, M.C.P.P., Leitão, S.G., Cerqueira-Coutinho, C., Vermelho, A.B., Silva, R.S., Presgrave, O.A.F., Leitão, Á.A.C., Leitão, G.G., Ricci-Júnior, E., and Santos, E.P., 2016, In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts, Rev. Bras. Farmacogn., 26 (2), 251–258.

[25] Suresh, D., Nethravathi, P.C., Udayabhanu, U., Rajanaika, H., Nagabhushana, H., and Sharma, S.C., 2015, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities, Mater. Sci. Semicond. Process., 31, 446–454.

[26] Abdullah, J.A.A., Rosado, M.J., Guerrero, A., and Romero, A., 2023, Eco-friendly synthesis of ZnO-nanoparticles using Phoenix dactylifera L., polyphenols: Physicochemical, microstructural, and functional assessment, New J. Chem., 47 (9), 4409–4417.

[27] Jiménez-Rosado, M., Gomez-Zavaglia, A., Guerrero, A., and Romero, A., 2022, Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum), J. Cleaner Prod., 350, 131541.

[28] Gupta, M., Tomar, R.S., Kaushik, S., Mishra, R.K., and Sharma, D., 2018, Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus, Front. Microbiol., 9, 2030.

[29] Zhao, L.H., Zhang, R., Zhang, J., and Sun, S.Q., 2012, Synthesis and characterization of biocompatible ZnO nanoparticles, CrystEngComm, 14 (3), 945–950.

[30] Zandi, S., Kameli, P., Salamati, H., Ahmadvand, H., and Hakimi, M., 2011, Microstructure and optical properties of ZnO nanoparticles prepared by a simple method, Phys. B, 406 (17), 3215–3218.

[31] Hasanpour, A., Niyaifar, M., Asan, M., and Amighian, J., 2013, Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol–gel method, J. Magn. Magn. Mater., 334, 41–44.

[32] Wahab, R., Ansari, S.G., Kim, Y.S., Seo, H.K., Kim, G.S., Khang, G., and Shin, H.S., 2007, Low temperature solution synthesis and characterization of ZnO nano-flowers, Mater. Res. Bull., 42 (9), 1640–1648.

[33] Kołodziejczak-Radzimska, A., Markiewicz, E., and Jesionowski, T., 2012, Structural characterisation of ZnO particles obtained by the emulsion precipitation method, J. Nanomater., 2012 (1), 656353.

[34] Khan, M., Ware, P., and Shimpi, N., 2021, Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye, SN Appl. Sci., 3 (5), 1–17.

[35] Su, X., Zhao, X., Cui, C., Xi, N., Zhang, X.L., Liu, H., Yu, X., and Sang, Y., 2022, Influence of Wurtzite ZnO morphology on piezophototronic effect in photocatalysis, Catalysts, 12 (9), 946.

[36] Chan, Y.Y., Pang, Y.L., Lim, S., and Chong, W.C., 2021, Facile green synthesis of ZnO nanoparticles using natural-based materials: Properties, mechanism, surface modification and application, J. Environ. Chem. Eng., 9 (4), 105417.

[37] Yousefi, M., Gholami, M., Oskoei, V., Mohammadi, A.A., Baziar, M., and Esrafili, A., 2021, Comparison of LSSVM and RSM in simulating the removal of ciprofloxacin from aqueous solutions using magnetization of functionalized multi-walled carbon nanotubes: Process optimization using GA and RSM techniques, J. Environ. Chem. Eng., 9 (4), 105677.

[38] Wang, Y.X., Gupta, K., Li, J.R., Yuan, B., Yang, J.C.E., and Fu, M.L., 2018, Novel chalcogenide based magnetic adsorbent KMS-1/L-Cystein/Fe3O4 for the facile removal of ciprofloxacin from aqueous solution, Colloids Surf., A, 538, 378–386.

[39] El-Bendary, N., El-Etriby, H.K., and Mahanna, H., 2022, Reuse of adsorption residuals for enhancing removal of ciprofloxacin from wastewater, Environ. Technol., 43 (28), 4438–4454.

[40] Shang, J.G., Kong, X.R., He, L.L., Li, W.H., and Liao, Q.J.H., 2016, Low-cost biochar derived from herbal residue: Characterization and application for ciprofloxacin adsorption, Int. J. Environ. Sci. Technol., 13 (10), 2449–2458.

[41] Khoshnamvand, N., Ahmadi, S., and Mostafapour, F.K., 2017, Kinetic and isotherm studies on ciprofloxacin an adsorption using magnesium oxide nanopartices, J. Appl. Pharm. Sci., 7 (11), 79–83.

[42] Sparkes, D., and Enoch, D.A., 2022, “Quinolones” in Comprehensive Pharmacology, Elsevier, Oxford, UK, 240–254.

[43] Srinivas, C., Ranjith Kumar, E., Tirupanyam, B.V, Singh Meena, S., Bhatt, P., Prajapat, C.L., Chandrasekhar Rao, T.V., and Sastry, D.L., 2020, Study of magnetic behavior in co-precipitated Ni–Zn ferrite nanoparticles and their potential use for gas sensor applications, J. Magn. Magn. Mater., 502, 166534.

[44] Pratama, G., Yanuarti, R., Ilhamdy, A.F., and Suhana, M.P., 2019, Formulation of sunscreen cream from Eucheuma cottonii and Kaempferia galanga (Zingiberaceae), IOP Conf. Ser.: Earth Environ. Sci., 278 (1), 012062.

[45] Rasheed, A., Shama, S.N., Mohanalakshmi, S., and Ravichandran, V., 2012, Formulation, characterization and in vitro evaluation of herbal sunscreen lotion, Orient. Pharm. Exp. Med., 12 (4), 241–246.

[46] More, B.H., Sakharwade, S.N., Tembhurne, S.V., and Sakarkar, D.M., 2013, Evaluation of sunscreen activity of cream containing leaves extract of Butea monosperma for topical application, Int. J. Res. Cosmet. Sci., 3 (1), 1–6.

[47] Sjahjadi, F.R., Febriyenti, F., and Lucida, H., 2022, Formula Optimization of a Sunscreen Cream of Tomato‘s Purified Extract, Proceedings of the 2nd International Conference on Contemporary Science and Clinical Pharmacy 2021 (ICCSCP 2021), Atlantis Press, 42–48.

[48] Shah, Y., and Mewada, R., 2023, Preparation and evaluation of herbal sunscreen creams, Int. J. Pharm. Chem. Anal., 10 (2), 116–124.



DOI: https://doi.org/10.22146/ijc.101359

Article Metrics

Abstract views : 1311 | views : 479


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.