Evaluation of Extraction Buffers for Protein Identification in Fish Paste with Chicken Blood Plasma (CBP) Spikes: A Preliminary Mass Spectrometry Study

https://doi.org/10.22146/ijc.100755

Nurhazirah Azmi(1), Siti Aimi Sarah Zainal Abidin(2*), Nurkhurul Ain Zakaria(3), Mohd Syarafuddin Abdul Shukor(4), Saiful Anuar Karsani(5), Low Kim Fatt(6), Mohd Hafis Yuswan(7)

(1) Faculty of Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, Tapah Road, Perak 35400, Malaysia; Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
(2) Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia; Malaysia Institute of Transport (MITRANS), Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
(3) Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
(4) Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
(5) Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Universiti Malaya Center for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
(6) Faculty of Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, Tapah Road, Perak 35400, Malaysia
(7) Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
(*) Corresponding Author

Abstract


Blood plasma is commonly used as a protease inhibitor in surimi production to improve product quality and stability during processing. However, its use in food is prohibited in Islam and classified as najs al-mutawasitah, necessitating the detection of blood plasma adulteration to uphold halal standards and food safety. This study compared the effectiveness of different extraction buffers—ultrapure water, 0.05 M Tris-HCl, 0.05 M Tris-Urea, and ultrapure water followed by acetone precipitation—on protein and peptide yield from chicken blood plasma (CBP) using liquid chromatography–quadrupole linear ion trap mass spectrometry (LC-QTRAP-MS). Ultrapure water and acetone precipitation yielded the highest protein content, prompting further proteome profiling of CBP, fish paste, and surimi spiked with CBP (0.5, 1, and 1.5%) via liquid chromatography–quadrupole time-of-flight mass spectrometry (LC–QTOF-MS). Apolipoprotein AI (Apo AI) and fibrinogens emerged as key proteins in CBP. Apo AI was detected in all spiked surimi samples, demonstrating its potential as a marker for blood plasma contamination. The proposed method enhances extraction and detection protocols, using mass spectrometry to provide a reliable tool for addressing halal compliance and mitigating food safety risks associated with blood-derived adulterants in surimi products.


Keywords


mass spectrometry; chicken blood plasma; spiked sample; Apolipoprotein AI; fibrinogen



References

[1] Hou, S.W., Wei, W., Wang, Y., Gan, J.H., Lu, Y., Tao, N.P., Wang, X.C., Liu, Y., and Xu, C.H., 2019, Integrated recognition and quantitative detection of starch in surimi by infrared spectroscopy and spectroscopic imaging, Spectrochim. Acta, Part A, 215, 1–8.

[2] Zhou, X., Chen, T., Lin, H., Chen, H., Liu, J., Lyu, F., and Ding, Y., 2019, Physicochemical properties and microstructure of surimi treated with egg white modified by tea polyphenols, Food Hydrocolloids, 90, 82–89.

[3] Fowler, M.R., and Park, J.W., 2015, Effect of salmon plasma protein on Pacific whiting surimi gelation under various ohmic heating conditions, LWT - Food Sci. Technol., 61 (2), 309–315.

[4] Nopianti, R., Herpandi, H., Baehaki, A., Rinto, R., Ridhowati, S., and Suharono, M.T., 2019, Protease inhibitory activity and protein analysis of catfish (Pangasius hypothalmus) and swamp eel (Monopterus albus) blood plasma, Pertanika J. Trop. Agric. Sci., 42 (1), 155–164.

[5] Sahilah, A.M., Lailia Liyana, M.N., Aravindran, S., Aminah, A., and Mohd Khan, A., 2016, Halal authentication in Malaysia context: Potential adulteration of non-halal ingredients in meatballs and surimi products, Int. Food Res. J., 23 (5), 1832–1838.

[6] Ofori, J.A., and Hsieh, Y.H.P., 2014, Issues related to the use of blood in food and animal feed, Crit. Rev. Food Sci. Nutr., 54 (5), 687–697.

[7] Núñez-Flores, R., Cando, D., Borderías, A.J., and Moreno, H.M., 2018, Importance of salt and temperature in myosin polymerization during surimi gelation, Food Chem., 239, 1226–1234.

[8] Buse, K.K., Morris, D.L., Diaz, H.L., Drehmel, O.R., and Kononoff, P.J., 2022, Comparison of methods to estimate ruminal degradation and intestinal digestibility of protein in hydrolyzed feather meal with or without blood, JDS Commun., 3 (2), 101–105.

[9] Siti Jamilah, M.S., Nurrulhidayah, A.F., Azura, A., Mat Jubri, S.M., Rohman, A., Nur Azira, T., Arieff Salleh, R., and Rashidi, O., 2021, Issues related to animal blood into food products: A review paper, Food Res., 5 (3), 12–21.

[10] BioSpace, 2023, Animal Blood Plasma Products and Derivatives Market Detailed Study Analysis and Forecast by 2025, BioSpace, https://www.biospace.com/article/animal-blood-plasma-products-and-derivatives-market-detailed-study-analysis-and-forecast-by-2025/.

[11] Lubis, H.N., Mohd-Naim, N.F., Alizul, N.N., and Ahmed, M.U., 2016, From market to food plate: Current trusted technology and innovations in halal food analysis, Trends Food Sci. Technol., 58, 55–68.

[12] Prandi, B., Varani, M., Faccini, A., Lambertini, F., Suman, M., Leporati, A., Tedeschi, T., and Sforza, S., 2019, Species-specific marker peptides for meat authenticity assessment: A multispecies quantitative approach applied to Bolognese sauce, Food Control, 97, 15–24.

[13] Fornal, E., and Montowska, M., 2019, Species-specific peptide-based liquid chromatography–mass spectrometry monitoring of three poultry species in processed meat products, Food Chem., 283, 489–498.

[14] Beck, H.C, Overgaard, M., and Melholt Rasmussen, L., 2015, Plasma proteomics to identify biomarkers – Application to cardiovascular diseases, Transl. Proteomics, 7, 40–48.

[15] You, J., Guo, Y., Zhang, Y., Kang, J.J., Wang, L.B., Feng, J.F., Cheng, W., and Yu, J.T., 2023, Plasma proteomic profiles predict individual future health risk, Nat. Commun., 14 (1), 7817.

[16] Geyer, P.E., Holdt, L.M., Teupser, D., and Mann, M., 2017, Revisiting biomarker discovery by plasma proteomics, Mol. Syst. Biol., 13 (9), 942.

[17] Winston, C.N., Langford, O., Levin, N., Raman, R., Yarasheski, K., West, T., Abdel-Latif, S., Donohue, M., Nakamura, A., Toba, K., Masters, C.L., Doecke, J., Sperling, R.A., Aisen, P.S., Rissman, R.A., and Libon, D., 2023, Evaluation of blood-based plasma biomarkers as potential markers of amyloid burden in preclinical Alzheimer’s disease, J. Alzheimer’s Dis., 92 (1), 95–107.

[18] Osterbur, K., Mann, F.A., Kuroki, K., and Declue, A., 2014, Multiple organ dysfunction syndrome in humans and animals, J. Vet. Intern. Med., 28 (4), 1141–1151.

[19] Ain, N., Sarah, S.A., Azmi, N., Bujang, A., and Ab Mutalib, S.R., 2023, Response surface methodology (RSM) identifies the lowest amount of chicken plasma protein (CPP) in surimi-based products with optimum protein solubility, cohesiveness, and whiteness, CYTA - J. Food, 21 (1), 646–655.

[20] Gordeeva, A.I., Valueva, A.A., Rybakova, E.E., Ershova, M.O., Shumov, I.D., Kozlov, A.F., Ziborov, V.S., Kozlova, A.S., Zgoda, V.G., Ivanov, Y.D., Ilgisonis, E.V., Kiseleva, O.I., Ponomarenko, E.A., Lisitsa, A.V., Archakov, A.I., and Pleshakova, T.O., 2023, MS identification of blood plasma proteins concentrated on a photocrosslinker-modified surface, Int. J. Mol. Sci., 25 (1), 409.

[21] Bose, U., Broadbent, J.A., Juhász, A., Karnaneedi, S., Johnston, E.B., Stockwell, S., Byrne, K., Limviphuvadh, V., Maurer-Stroh, S., Lopata, A.L., and Colgrave, M.L., 2021, Protein extraction protocols for optimal proteome measurement and arginine kinase quantitation from cricket Acheta domesticus for food safety assessment, Food Chem., 348, 129110.

[22] Baghalabadi, V., Doucette, A.A., 2020, Mass spectrometry profiling of low molecular weight proteins and peptides isolated by acetone precipitation, Anal. Chim. Acta, 1138, 38–48.

[23] Benjakul, S., Visessanguan, W., Thongkaew, C., and Tanaka, M., 2005, Effect of frozen storage on chemical and gel-forming properties of fish commonly used for surimi production in Thailand, Food Hydrocolloids, 19 (2), 197–207.

[24] Moosavi‐Nasab, M., Asgari, F., and Oliyaei, N., 2019, Quality evaluation of surimi and fish nuggets from Queen fish (Scomberoides commersonnianus), Food Sci. Nutr., 7 (10), 3206–3215.

[25] Amir Hamzah, K., Turner, K., Nichols, D., and Ney, L.J., 2024, Advances in targeted liquid chromatography-tandem mass spectrometry methods for endocannabinoid and N-acylethanolamine quantification in biological matrices: A systematic review, Mass Spectrom. Rev., n/a, 21897.

[26] Yuswan, M.H., Aizat, W.M., Lokman, M.A., Mohd Desa, M.N., Mustafa, S., Mat Junoh, N., Yusof, Z.N.B., Mohamed, R., Mohmad, Z., and Lamasudin, D.U., 2018, Chemometrics-assisted shotgun proteomics for establishment of potential peptide markers of non-halal pork (Sus scrofa) among halal beef and chicken, Food Anal. Methods, 11 (12), 3505–3515.

[27] Deutsch, E.W., Mendoza, L., Shteynberg, D.D., Hoopmann, M.R., Sun, Z., Eng, J.K., and Moritz, R.L., 2023, Trans-proteomic pipeline: Robust mass spectrometry-based proteomics data analysis suite, J. Proteome Res., 22 (2), 615–624.

[28] Schmidt, C.J., Kim, D.K., Pendarvis, G.K., Abasht, B., and McCarthy, F.M., 2023, Proteomic insight into human-directed selection of the domesticated chicken Gallus gallus, PLoS One, 18 (8), e0289648.

[29] Bose, U., Broadbent, J.A., Juhász, A., Karnaneedi, S., Johnston, E.B., Stockwell, S., Byrne, K., Limviphuvadh, V., Maurer-Stroh, S., Lopata, A.L., and Colgrave, M.L., 2022, Comparison of protein extraction protocols and allergen mapping from black soldier fly Hermetia illucens, J. Proteomics, 269, 104724.

[30] Jiang, Y., Rex, D.A.B., Schuster, D., Neely, B.A., Rosano, G.L., Volkmar, N., Momenzadeh, A., Peters-Clarke, T.M., Egbert, S.B., Kreimer, S., Doud, E.H., Crook, O.M., Yadav, A.K., Vanuopadath, M., Hegeman, A.D., Mayta, M.L., Duboff, A.G., Riley, N.M., Moritz, R.L., and Meyer, J.G., 2024, Comprehensive overview of bottom-up proteomics using mass spectrometry, ACS Meas. Sci. Au, 4 (4), 338–417.

[31] Sun, S., Zhou, J.Y., Yang, W., and Zhang, H., 2014, Inhibition of protein carbamylation in urea solution using ammonium-containing buffers, Anal. Biochem., 446, 76–81.

[32] Khalid, S., Drakhshaan, D., Alsawwa, A.G., Islam, M.K., Hashmat, K., Yousaf, A.I., Sidiq, A.B., and Subhani, M.S., 2024, A comparative study of extraction and quantification methods of protein isolated from beans, Insights-J. Health Rehabil., 2 (2), 142–152.

[33] Zhang, X., Yang, Y., Ngo, H.H., Guo, W., Wen, H., Wang, X., Zhang, J., and Long, T., 2021, A critical review on challenges and trend of ultrapure water production process, Sci. Total Environ., 785, 147254.

[34] Nickerson, J.L., and Doucette, A.A., 2020, Rapid and quantitative protein precipitation for proteome analysis by mass spectrometry, J. Proteome Res., 19 (5), 2035–2042.

[35] Bunk, D.M., and Welch, M.J., 1997, Electrospray ionization mass spectrometry for the quantitation of albumin in human serum, J. Am. Soc. Mass Spectrom., 8 (12), 1247–1254.

[36] Rochat, B., 2018, “Quantitative and Qualitative LC-High-Resolution MS: The Technological and Biological Reasons for a Shift of Paradigm” in Recent Advances in Analytical Chemistry, Eds. Ince, M., and Kaplan Ince, O., IntechOpen, Rijeka, Croatia.

[37] Cox, J., and Mann, M., 2008, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol., 26 (12), 1367–1372.

[38] Orsburn, B.C., 2021, Proteome Discoverer—A community enhanced data processing suite for protein informatics, Proteomes, 9 (1), 15.

[39] Kong, A.T., Leprevost, F.V., Avtonomov, D.M., Mellacheruvu, D., and Nesvizhskii, A.I., 2017, MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics, Nat. Methods, 14 (5), 513–520.

[40] Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G.A., and Ma, B., 2011, PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification, Mol. Cell. Proteomics, 11 (4), M111.010587.

[41] Röst, H.L., Sachsenberg, T., Aiche, S., Bielow, C., Weisser, H., Aicheler, F., Ehrlich, H.C., Gutenbrunner, P., Kenar, E., Liang, X., Nahnsen, S., Nilse, L., Pfeuffer, J., Rosenberger, G., Rurik, M., Schmitt, U., Veit, J., Walzer, M., Wojnar, D., Wolski, W.E., Schilling, O., Choudhary, J.S., Malmström, L., Aebersold, R., Reinert, K., and Kohlbacher, O., 2016, OpenMS: A flexible open-source software platform for mass spectrometry data analysis, Nat. Methods, 13 (9), 741–748.

[42] Bittremieux, W., Tabb, D.L., Impens, F., Staes, A., Timmerman, E., Martens, L., and Laukens, K., 2018, Quality control in mass spectrometry-based proteomics, Mass Spectrom. Rev., 37 (5), 697–711.

[43] Witjaksono, G., and Alva, S., 2019, “Applications of Mass Spectrometry to the Analysis of Adulterated Food” in Mass Spectrometry - Future Perceptions and Applications, Eds. Kamble, G.S., IntechOpen, Rijeka, Croatia.

[44] Tanaka, S., Couret, D., Tran-Dinh, A., Duranteau, J., Montravers, P., Schwendeman, A., and Meilhac, O., 2020, High-density lipoproteins during sepsis: From bench to bedside, Crit. Care, 24 (1), 134.

[45] Khirfan, G., Li, M., Wang, X., DiDonato, J.A., Dweik, R.A., and Heresi, G.A., 2021, Abnormal levels of apolipoprotein A-I in chronic thromboembolic pulmonary hypertension, Pulm. Circ., 11 (2), 1–7.

[46] Puliasis, S.S., Lewandowska, D., Hemsley, P.A., and Zhang, R., 2023, ProtView: A versatile tool for in silico protease evaluation and selection in a proteomic and proteogenomic context, J. Proteome Res., 22 (7), 2400–2410.

[47] Shao, X., Grams, C., and Gao, Y., 2022, Sequence coverage visualizer: A web application for protein sequence coverage 3D visualization, J. Proteome Res., 22 (2), 343–349.

[48] Pietrowska, M., Wlosowicz, A., Gawin, M., and Widlak, P., 2019, “MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal” in Emerging Sample Treatments in Proteomics, Eds. Capelo-Martínez, J.L., Springer International Publishing, Cham, Switzerland, 57–76.

[49] FAO, 2024, Global fisheries and aquaculture production reaches a new record high, Report, https://www.fao.org/newsroom/detail/fao-report-global-fisheries-and-aquaculture-production-reaches-a-new-record-high/en.

[50] Erbay, A., and Yesilsu, A.F., 2021, Fish protein and its derivatives: Functionality, biotechnology and health effects, Aquat. Food Stud., 1 (1), 1–8.

[51] Geyer, P.E., Voytik, E., Treit, P.V., Doll, S., Kleinhempel, A., Niu, L., Müller, J.B., Buchholtz, M.L., Bader, J.M., Teupser, D., Holdt, L.M., and Mann, M., 2019, Plasma proteome profiling to detect and avoid sample‐related biases in biomarker studies, EMBO Mol. Med., 11 (11), e10427.

[52] Xu, J., Zhu, L.Y., Shen, H., Zhang, H.M., Jia, X.B., Yan, R., Li, S.L., and Xu, H.X., 2012, A critical view on spike recovery for accuracy evaluation of analytical method for medicinal herbs, J. Pharm. Biomed. Anal., 62, 210–215.

[53] Rozanova, S., Barkovits, K., Nikolov, M., Schmidt, C., Urlaub, H., and Marcus, K., 2021, “Quantitative Mass Spectrometry-Based Proteomics: An Overview” in Quantitative Methods in Proteomics, Springer, New York, US, 85–116.



DOI: https://doi.org/10.22146/ijc.100755

Article Metrics

Abstract views : 1288 | views : 802 | views : 314


Copyright (c) 2025 Indonesian Journal of Chemistry

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Indonesian Journal of Chemistry (ISSN 1411-9420 /e-ISSN 2460-1578) - Chemistry Department, Universitas Gadjah Mada, Indonesia.

Web
Analytics View The Statistics of Indones. J. Chem.