Characteristics and Antibacterial Activity of ZnO Nanoparticle Fortified Probiotic Yogurt
Pipit Erlita Sari(1), Zaenal Abidin(2*), Irma Isnafia Arief(3), Cahyo Budiman(4)
(1) Department of Animal Production and Technology-Faculty of Animal Science, IPB University
(2) Department of Chemistry-Faculty of Mathematics and Natural Sciences, IPB University
(3) Department of Animal Production and Technology-Faculty of Animal Science, IPB University
(4) Department of Animal Production and Technology-Faculty of Animal Science, IPB University
(*) Corresponding Author
Abstract
Zinc deficiency is a major health issue in developing nations, especially in Southeast and South Asia. To address this, food fortification using nanotechnology, such as ZnO nanoparticles deemed safe by the US FDA, can enhance daily zinc intake essential for growth and immune health. This research emphasizes on yoghurt fortification with various types: ZnO nanoparticle fortification and the addition of probiotic bacteria Lactiplantibacillus plantarum subsp. plantarum IIA-1A5 (Accession Number: OR473281) and aims to analyze the nutritional value, characteristics, total lactic acid bacteria (LAB) and antibacterial activity of probiotic yogurt fortified with ZnO nanoparticles. There were six levels of treatment designed in this study and each treatment was tested three times. The statistical test used in analyzing the nutritional value, characteristics, total LAB and antibacterial activity in this study is the Tukey test which is applied as a multiple range test while in organoleptic testing using the Kruskal-Wallis non-parametric test. The results showed that the fortification of yogurt with ZnO nanoparticles had significant interaction (p<0.05) on yogurt viscosity, LAB content, and color attributes in hedonic quality test. The antibacterial activity towards Staphylococcus aureus and Escherichia coli produced by six treatments were moderate, with inhibition zones ranging between 5 to 10 mm. This study concluded that the fortified yoghurt treatment met the Indonesian National Standard (SNI), demonstrating the potential of this approach in addressing zinc deficiency in at-risk populations. This research underscores the promise of nanotechnology in food fortification strategies to combat micronutrient deficiencies globally
Keywords
Full Text:
8. Erlita SariReferences
AOAC. 2005. Official Method of Analysis. 18th Ed. AOAC International, Maryland.
AOAC. 2007. Official Methods of Analysis. Ass of Anal. Chem., USA.
Aprilia, L. 2022. Aktivitas Antibakteri Protein Serisin Bombyx mori dan Samia cynthia ricini terhadap Escherichia coli dan Staphylococcus aureus. Diss. IPB University, Bogor.
Arief, I. I., Z. Abidin, Z. Wulandari, C. Budiman, R. Adiyoga, and E. A. Kamila. 2023. Physicochemical profile, amino acid, and flavors of probiotic yogurt with the addition of nano ZnO food grade. FS & T. 43. https://doi.org/10.5327/fst.13123
Arief, I. I., C. Budiman, B. S. L. Jenie, E. Andreas and A. Yuneni. 2015. Plantarisin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Benef. Microbes. 6: 603-613. DOI: 10.3920/BM2014.0064.
Arioui, F., D. A. Saada, and A. Cheriguene. 2017. Physicochemical and sensory quality of yogurt incorporated with pectin from peel of Citrus sinensis. Food Science and Nutrition. 5: 358-364.
Ariyarathna, I. R., R. Rajakaruna, and D. N. Karunaratne. 2017. The rise of inorganic nanomaterial implementation in food applications. Food Control. 77: 251–259. https://doi.org/10.1016/j.foodcont.2017.02.016.
Badan Standardisasi Nasional (BSN). 2009. SNI Yoghurt (SNI 2981:2009). Dewan Standardisasi Nasional, Jakarta.
Badan Standarisasi Nasional (BSN). 2006. Petunjuk Pengujian Organoleptik dan atau Sensori (SNI 01-2346-2006). Dewan Standardisasi Nasional, Jakarta.
Biswas, R., M. Alam, A. Sarkar, M. I. Haque, M. M. Hasan, and M. Hoque. 2022. Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon. 21: e11795. doi: 10.1016/j.heliyon.2022.e11795.
Cotton, G. C., N. R. Lagesse, L. S. Parke, and C. J. Meledandri. 2019. Antibacterial nanoparticles. Comprehensive Nanoscience and Nanotechnology. 1–5. DOI: 10.1016/B978-0-12-803581-8.10409-6.
Darma, A., A. F. Athiyyah, L. E. Candra, R. G. Ranuh, and S. M. Sudarmo. 2019. Effect of preventative zinc supplementation on damage to intestinal integrity caused by Escherichia coli lipopolysaccharide administration: Experimental study in an animal model. Carpath. J. Food Sci. Technol. 11: 57–66. https://doi.org/10.34302/CRPJFST/2019.11.5.8.
Davis, W. W., and T. R. Stout. 1971. Disc Plate Methods of Microbiological Antibiotic Assay. Microbiology. 22: 659-665
Dizaj, S. M., F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, and K. Adibkia. 2014. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. J. 44: 278–284. https://doi 10.1016/j.msec.2014.08.031.
Dmochowska, A., J. Czajkowska, R. Jędrzejewski, W. Stawiński, P. Migdał, and M. Fiedot-Toboła. 2020. Pectin based banana peel extract as a stabilizing agent in zinc oxide nanoparticles synthesis. Int. J. Bio. Macromol. 165(Part A): 1581-1592. ISSN 0141-8130. DOI: 10.1016/j.ijbiomac.2020.10.042.
El-Sayed, H. S., S. M. El Sayed, and A. M. Youssef. 2021. Novel approach for biosynthesizing of zinc oxide nanoparticles using Lactobacillus gasseri and their influence on microbiological, chemical, sensory properties of integrated yogurt. Food Chem. 365: 130513. https://doi.org/10.1016/j.foodchem.2021.130513.
Harjiyanti, M. D., Y. B. Pramono, and S. Mulyani. 2013. Total asam, viskositas, dan kesukaan pada yoghurt drink dengan sari buah mangga (Mangifera indica) sebagai perisa alami. J. Apl. Teknol. Pangan. 2: 104-7.
Hashem, N. M. and A. G. Bulnes. 2020. State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals. Animals 10: 840.
Juandini, P. A., I. I. Arief, Z. Wulandari, and Z. Abidin. 2024. Characteristics, Antioxidant, and Antihypertensive Activities of Probiotic Greek Yogurt with Roselle Extract Addition. TASJ. 47: 235-241.
Karmakar, P., P. R. Ray, P. N. Chatterjee, A. Mahato, and L. Haldar. 2022. Potential of Zinc Oxide Nanoparticle for Dietary Fortification in Yoghurt: Physicochemical, Microbiological, Rheological and Textural Analysis. Asian J. Dairy Food Res. 39: 175-180.
Khotimchenko, M., E.A. Kolenchenko, and Y. Khotimchenko. 2008. Zinc-binding activity of different pectin compounds in aqueous solutions. J. colloid interface sci. 323. 216-22. 10.1016/j.jcis.2008.04.013.
Marlia, D. L., P. G. Dwipoerwantoro, and N. Advani. 2016. Defisiensi zinc sebagai salah satu faktor risiko diare akut menjadi diare melanjut. Sari Pediatri 16: 299-306.
Melanie, R. T., I. I. Arief, and E. Taufik. 2018. Karakteristik yogurt probiotik dengan penambahan ekstrak bunga rosella (Hibiscus sabdariffa L) selama penyimpanan suhu dingin. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan 6: 36-44. https://doi.10.29244/jipthp.6.1.36-44.
Mendes, C.R., G. Dilarri, C.F. Forsan, V. D. M. R. Sapata, P. R. M. Lopes, and P. B. de Moraes. 2022. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports. 12: 2658. https://doi.org/10.1038/s41598-022-06657-y.
Mostafa, A. A., A. A. Al-Askar, K. S. Almaary, T. M. Dawoud, E. N. Sholkamy, and M. M. Bakri. 2018. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences. 25: 361-366.
Oktaviana, A. Y., I. I. Arief, and I. Batubara. 2018. Potensi yogurt rosella probiotik Lactobacillus plantarum IIA-1A5 atau Lactobacillus fermentum B111K dalam mengasimilasi kolesterol. JATP. 7. https://doi.org/10.17728/jatp.2760.
Oktaviani, M., A. Arpy, and P. A. Pratiwi. 2024. Viscosity. Chem Trendz Journal (CTJ). 1: 1–6. https://heijournal.id/index.php/chj/ article/view/17
Patra, J.K., H.S. Shin, and S. Paramithiotis. 2018. Application of nanotechnology in food science and food microbiology. Front. Microbiol. 9. https://doi.org/10.3389/fmicb. 2018.00714.
Pelczar, M. J., E. C. S. Chan, and R. S. Hadioetomo. 2007. Dasar-dasar mikrobiologi. Universitas Indonesia Press, Jakarta.
Purwandini, S., and D. R. Atmaka. 2023. The Effect of Adequate Zinc Consumption with the Occurrence of Stunting in Indonesia: Literature Review. MGK.12: 509–515. https://doi.org/10.20473/mgk.v12i1.2023.509-515.
Samarathunga, J., M. Jayasinghe, M. Edirisinghe, I. Wijesekara, P. Abeysundara, A. Shafi, U. Farooq, and S. Senadheera. 2020. A comparative study to develop calcium, zinc, and antioxidant rich drinking yoghurt products using plant and pharmaceutical ingredients. Asian J. Agric. Biol. 8: 174-185. https://doi.org/10.35495/ajab.2019.08.360
Sens, P., and J. Plastino. 2015. Membrane tension and cytoskeleton organization in cell motility. Journal of Physics: Condensed Matter 27: 273103. https://doi.org/10.1088/0953-8984/27/27/273103.
Sihombing, D. E., I. I. Arief, and S. Budiarti. 2015. Application of antimicrobial agents produced by Lactobacillus plantarum IIA-1A5 as natural preservative on beef during room temperature storage. Adv. J. Food Sci. Technol. 8: 251-255.
Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad. 2015. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 7: 219-242. https://doi.org/10.1007/s40820-015-0040-x.
Tamrakar, R., M. Ramrakhiani, and B. P. Chandra. 2008. Effect of capping agent concentration on photophysical properties of zinc sulfide nanocrystals. The Open Nanosci. J. 2: 12-16. https://doi.10.2174/187414010080 2010012.
Toffanin, V., M. De Marchi, N. Lopez-Villalobos, and M. Cassandro. 2015. Effectiveness of mid-infrared spectroscopy for prediction of the contents of calcium and phosphorus, and titratable acidity of milk and their relationship with milk quality and coagulation properties. Int. Dairy J. 41: 68-73.
USDA. United States Department of Agriculture. 1995. Water Activity in Food. Division of Food Science and Technology Fact Sheet CSIRO, Pathogen Modeling Program (PMP) Online. https://pmp.errc.ars.usda. gov/WaterActivity.aspx.
Urquiza, E. S., M. A. M. Rojas, and J. F. V. Ruiz. 2017. Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT-Food Science and Technology 80: 462-469. https://doi.org/10.1016/j.lwt.2017.03.025.
Wang, M., Y. Li, J. Yang, R. Shi, L. Xiong, and Q. Sun. 2021. Effects of food-grade inorganic nanoparticles on the probiotic properties of Lactobacillus plantarum and Lactobacillus fermentum. LWT Food Science and Technology 139: 110540. https://doi.org/10.1016/j.lwt.2020.110540.
Wegmüller, R., F. Tay, C. Zeder, M. Brnic, and R. F. Hurrell. 2014. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J. Nutr. 144: 132-136. https://doi.10.3945/jn.113. 181487.
Winarno, F.G., and E.I. Fernandez. 2007. Susu dan Produk Fermentasinya. MBRIO Pres, Jakarta.
DOI: https://doi.org/10.21059/buletinpeternak.v48i4.94145
Article Metrics
Abstract views : 255 | views : 111Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Buletin Peternakan (Bulletin of Animal Science) Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.