CHARACTERISTICS AND ANTIBACTERIAL ACTIVITY OF ZnO NANOPARTICLE-FORTIFIED PROBIOTIC YOGURT

https://doi.org/10.21059/buletinpeternak.v48i4.94145

Pipit Erlita Sari(1), Zaenal Abidin(2*), Irma Isnafia Arief(3), Cahyo Budiman(4)

(1) Department of Animal Production and Technology-Faculty of Animal Science, IPB University
(2) Department of Chemistry-Faculty of Mathematics and Natural Sciences, IPB University
(3) Department of Animal Production and Technology-Faculty of Animal Science, IPB University
(4) Department of Animal Production and Technology-Faculty of Animal Science, IPB University
(*) Corresponding Author

Abstract


Zinc deficiency is a pressing global health concern, especially in developing nations, predominantly in Southeast and South Asia. Daily zinc intake is vital for growth and immune system maintenance as the body cannot store it. One approach to boost zinc intake is food fortification, notably nanotechnology. Zinc is available as ZnO nanoparticles, deemed safe by the US FDA. This research emphasizes fortifying yogurt with many types : fortification of ZnO nanoparticles and adding the probiotic bacteria Lactiplantibacillus plantarum subsp. plantarum IIA-1A5 (Accession Number: OR473281). The Tukey test was implemented as a multiple-range test. The Kruskal-Wallis non-parametric test was utilized to analyze the organoleptic results of the test. Significant interactions were found (P<0.05) concerning yogurt's viscosity, lactic acid bacteria content, and color attributes in the hedonic quality test. The antibacterial activity towards Staphylococcus aureus and Escherichia coli produced by six treatments were moderate, with inhibition zones ranging between 5 to 10 mm. Overall, the physical criteria and chemical content of the fortified yogurt met the Indonesian National Standards (SNI), highlighting the potential of this approach in addressing zinc deficiency in at-risk populations. This research underscores the promise of nanotechnology in food fortification strategies to combat micronutrient deficiencies globally.


Keywords


antibacterial; fortification; yogurt; nanoparticle; zink

Full Text:

8. Erlita Sari


References

AOAC (Association of Official Analitycal Chemistry). (2005). Official Method of Analysis. 18th Ed. Maryland (US): AOAC International. Arief, I.I., Budiman, C, Jenie, B.S.L., Andreas, E., & Yuneni, A. (2015). Plantarisin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Beneficial Microbes 6: 603-613. DOI: 10.3920/BM2014.0064. Ariyarathna I.R., Rajakaruna R., Karunaratne D.N. (2017). The rise of inorganic nanomaterial implementation in food applications. Food Control. 77: 251–259. https://doi.org/10.1016/j.foodcont.2017.02.016. Babayevska, N., Przysiecka, Ł., Iatsunskyi, I. et al. (2022). ZnO size and shape effect on antibacterial activity and cytotoxicity profile. Sci Rep. 12, 8148. https://doi.org/10.1038/s41598-022-12134-3. Badan Standardisasi Nasional. (2009). SNI Yoghurt (SNI 2981:2009). Jakarta: Dewan Standardisasi Nasional. Biswas R, Alam M, Sarkar A, Haque MI, Hasan MM, Hoque M. (2022). Application of nanotechnology in food: processing, preservation, packaging and safety assessment. Heliyon. 21:8(11): e11795. doi: 10.1016/j.heliyon.2022.e11795. Belitz, H.D., Grosch, W., & Schieberle, P. (2009). Food Chemistry. 4th Edition, Springer Verlag, Berlin. Cisneros, J. S., Chain, C. Y., Rivas Aiello, M. B., Parisi, J., Castrogiovanni, D. C., Bosio, G. N., Mártire, D. O., & Vela, M. E. (2021). Pectin-Coated Plasmonic Nanoparticles for Photodynamic Therapy: Inspecting the Role of Serum Proteins. ACS Omega. 6(19), 12567–12576. https://doi.org/10.1021/acsomega.1c00542. Cotton, G. C., Lagesse, N. R., Parke, L. S., & Meledandri, C. J. (2019). Antibacterial nanoparticles. In Comprehensive Nanoscience and Nanotechnology. 1–5. DOI: 10.1016/B978-0-12-803581-8.10409-6. Darma, A., Athiyyah, A. F., Candra, L. E., Ranuh, R. G., & Sudarmo, S. M. (2019). Effect of preventative zinc supplementation on damage to intestinal integrity caused by Escherichia coli lipopolysaccharide administration: Experimental study in an animal model. Carpathian Journal of Food Science and Technology. 11(5), 57–66. https://doi.org/10.34302/CRPJFST/2019.11.5.8. Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Material Science and Engineering Journal. C. 44, 278–284. DOI: 10.1016/j.msec.2014.08.031. Dmochowska, A., Czajkowska, J., Jędrzejewski, R., Stawiński, W., Migdał, P., Fiedot-Toboła, M. (2020). Pectin based banana peel extract as a stabilizing agent in zinc oxide nanoparticles synthesis. International Journal of Biological Macromolecules, 165(Part A), 1581-1592. ISSN 0141-8130. DOI: 10.1016/j.ijbiomac.2020.10.042. El-Sayed HS, El Sayed SM, Youssef AM. (2021). Novel approach for biosynthesizing of zinc oxide nanoparticles using Lactobacillus gasseri and their influence on microbiological, chemical, sensory properties of integrated yogurt. Food Chemistry. 365: 130513. https://doi.org/10.1016/j.foodchem.2021.130513. Frazier, R. A. (2009). Food Chemistry. Campbell-Plaat G, editor. Food science and technology. Oxford (GB): J wiley. Hanifah, R., Arief, I.I., & Budiman, C. (2015). Antimicrobial activity of goat milk yoghurt with addition of a probiotic Lactobacillus acidophilus IIA – 2B4 and roselle (Hibiscus sabdariffa L) extract. International Food Research Journal. 23(6):2638-2645. Jonathan, H. A., Fitriawati, I. N., Arief, I. I., Soenarno, M. S., & Mulyono, R. H. (2022). Fisikokimia, mikrobiologi dan organoleptik yogurt probiotik dengan penambahan buah merah (Pandanus conodeous L.). Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan. 10(1), 34-41. https://doi.org/10.29244/jipthp.10.1.34-41. Kang, S.S., Kim, M.K., & Kim, Y.J. (2019). Comprehensive Evaluation of Microbiological and Physicochemical Properties of Commercial Drinking Yogurts in Korea. Food Science of Animal Resources. 39(5), 820-830. https://doi.org/10.5851/kosfa.2019.e72. Ketaren, S. (1986). Minyak dan Lemak Pangan. Edisi 1. Penerbit Universitas Indonesia. Lawless, H. and Heymann, H. (2010). Sensory Evaluation of Food Science Principles and Practices. Chapter 1, 2nd Edition, Ithaca, New York. Malaka, R. (2010). Eksopolisakarida bakteri starter kultur susu fermentasi sebagai sumber polisakarida harapan di masa depan. Orasi Ilmiah. Universitas Hasanudin Makassar. DOI: 10.13140/RG.2.2.23826.04803. Martin, N., Boor, K., & Wiedmann, M. (2018). Effect of post-pasteurization contamination on fluid milk quality. Journal of Dairy Science. 101, 861-870. https://doi.org/10.3168/jds.2017-13339. Melanie, R. T., I. I. Arief, & Taufik, E. (2018). Karakteristik yogurt probiotik dengan penambahan ekstrak bunga rosella (Hibiscus sabdariffa L) selama penyimpanan suhu dingin. Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan. 6(1):36-44. DOI: 10.29244/jipthp.6.1.36-44. Mendes, C.R., Dilarri, G., Forsan, C.F. et al. (2022). Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Scientific Reports. 12: 2658. https://doi.org/10.1038/s41598-022-06657-y. Oktaviana, A. Y., Arief, I. I., & Batubara, I. (2018). Potensi yogurt rosella probiotik Lactobacillus plantarum IIA-1A5 atau Lactobacillus fermentum B111K dalam mengasimilasi kolesterol. Jurnal Aplikasi Teknologi Pangan. 7(3). DOI: https://doi.org/10.17728/jatp.2760. Patra J.K., Shin H.-S., Paramithiotis S. (2018). Application of nanotechnology in food science and food microbiology. Frontiers in Microbiology. 9(714). https://doi.org/10.3389/fmicb.2018.00714. Purwandini, S., & Atmaka, D. R. (2023). The Effect of Adequate Zinc Consumption with the Occurrence of Stunting in Indonesia: Literature Review. Media Gizi Kesmas, 12(1), 509–515. https://doi.org/10.20473/mgk.v12i1.2023.509-515. Rejeki, V. P., & Panunggal, B. (2016). Hubungan asupan protein, seng dan serum seng pada anak sekolah dasar. Journal of Nutrition College, 5(2), 166–171. https://doi.org/10.14710/jnc.v5i3.16393. Sens, P., & Plastino, J. (2015). Membrane tension and cytoskeleton organization in cell motility. Journal of Physics: Condensed Matter, 27(27), 273103. https://doi.org/10.1088/0953-8984/27/27/273103 Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., & Mohamad, D. (2015). Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Letters. 7(3), 219-242. https://doi.org/10.1007/s40820-015-0040-x. Soenarno, M. S., Arief, I. I., Sumantri, C., Taufik, E., & Nuraida, L. (2020). Karakterisasi Plantarisin IIA-1A5 sebagai Antimikroba dan Evaluasi Aktivitas Sediaan Kering Beku Terenkapsulasi. Jurnal Aplikasi Teknologi Pangan, 9(1), 30. https://doi.org/10.17728/jatp.5480. Steel, R. G. D. & Torrie, J. H. (1995). Principles and Procedures of Statistica Biomedical Approach. 3rd edition. Singapore: McGraw Hill Inc. Susanto, T., & S. Yuwono. (2001). Pengujian Fisik Pangan. Surabaya: Unesa Pr. Szołtysik, M., Kucharska, A. Z., Dąbrowska, A., Zięba, T., Bobak, Ł., & Chrzanowska, J. (2021). Effect of Two Combined Functional Additives on Yoghurt Properties. Foods. 10(6):1159. doi: 10.3390/foods10061159. Tamrakar, R., Ramrakhiani, M., & Chandra, B. P. (2008). Effect of capping agent concentration on photophysical properties of zinc sulfide nanocrystals. The Open Nanoscience Journal. 2, 12-16. DOI: 10.2174/1874140100802010012. Urquiza, E. S., Rojas, M. A. M., & Ruiz, J. F. V. (2017). Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT-Food Science and Technology. 80, 462-469. https://doi.org/10.1016/j.lwt.2017.03.025. Wang, M., Li, Y., Yang, J., Shi, R., Xiong, L., & Sun, Q. (2021). Effects of food-grade inorganic nanoparticles on the probiotic properties of Lactobacillus plantarum and Lactobacillus fermentum. LWT Food Science and Technology. 139, 110540. https://doi.org/10.1016/j.lwt.2020.110540. Wegmüller, R., Tay, F., Zeder, C., Brnic, M., & Hurrell, R. F. (2014). Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. Journal of Nutrition, 144(2), 132-136. DOI: 10.3945/jn.113.181487. Winarno, F.G., & Fernandez, E.I. (2007). Susu dan Produk Fermentasinya. Jakarta (ID): MBRIO Pr.



DOI: https://doi.org/10.21059/buletinpeternak.v48i4.94145

Article Metrics

Abstract views : 73 | views : 73

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.