The Effect of Nanoencapsulated Citrus sinensis Peel Extract in Drinking Water on Growth Performance of Broiler Chicken
Hanggara Haidar Azmi(1), Zuprizal - Zuprizal(2), Nanung Danar Dono(3), Ahmad M Abdel-Mageed(4), Heru - Sasongko(5), Bambang - Ariyadi(6*)
(1) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281
(2) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281
(3) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281
(4) Department of Immunology and Physiology, Faculty of Science, Minia University, 61519
(5) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281
(6) Department of Animal Nutrition and Feed Science, Faculty of Animal Science, Gadjah Mada University, Yogyakarta, 55281
(*) Corresponding Author
Abstract
This research aimed to investigate the characteristics of nanoencapsulated Citrus sinensis peel extract (NCSPE) applied in drinking water and its effect on broiler chickens' growth performance and jejunal histomorphology. The total of 192 Male Broiler chicken was distributed into six treatments with four replicates (Eight birds each replicate). The experimental treatments were control diet and drinking water added with no treatment (T0; negative control), tetracycline 50 mg/l (T1; positive control), CSPE (Citrus sinensis peel extract) 1,5% (T2), CSPE 3% (T3), NCSPE 1,5% (T4), and NCSPE 3% (T5). The variables evaluated in this research were characteristics of NCSPE, growth performance. Data were analyzed using ANOVA in a completely randomized design. All data with a significant difference were then tested again using the Duncan Test with a probability of less than 5%. Results showed that the size of NEPM was 13,70 nm with a spherical shape and negative charges with zeta potentials of -13.37 mV. Supplementing 1,5% and 3% of NCSPE affects on feed intake, weight gain, and feed conversion ratio. It concluded that both 1,5% and 3% supplementation of NCSPE had a positive effect on growth performances.
Keywords
Full Text:
6. BambangReferences
Abdulameer, Y. S. 2018. The effects of dietary vitamin C and Citrus sinensis peel on growth, hematological characteristics, immune competence, and carcass characteristics in broilers exposed to heat stress. Iraqi J. Vet. Sci. 32: 253-260.
Agu, P. N., O. Oluremi, and C. D. Tuleun. 2010. Nutritional Evaluation of Sweet Orange (Citrus sinensis) Fruit Peel as a Feed Resource in Broiler Production. Int. J. Poult. Sci. 9: 684-688.
Akbarian, A., A. Golian, A. Gilani, H. Kermanshal, S. Zhaleh, A. Akhavan, S. De Smet, and J. Michaels. 2013. Effect of feeding citrus peel extracts on growth performance, serum components, and intestinal morphology of broilers exposed to high ambient temperature during the finisher phase. Livest. Sci. 157: 490-497.
Aljumaah, M. R., G. M. Suliman, A. A. Abdullatif, and A. M. Abudabos. 2020. Effects of phytobiotic feed additives on growth traits, blood biochemistry, and meat characteristics of broiler chickens exposed to Salmonella typhimurium. J. Poult. Sci. 11: 5744-5751.
Amad, A. A., K. Männer, K. R. Wendler, K. Neumann, and J. Zentek. 2011. Effects of a phytogenic feed additive on growth performance and ileal nutrient digestibility in broiler chickens. Poult. Sci. 90: 2811-2816.
Augustia, V. A. S., M. Musdzalifah, D. A. Lestari, and A. Chafidz. 2018. Effect of Sodium Tripolyphosphate on The Characteristics of Anthocyanin Microcapsules Extracted from Purple Sweet Potato (Ipomoea batatas L.). Pages 020056-1 – 020056-6 in AIP Conference Proceedings 2049. Universitas Islam Indonesia (UII), Indonesia.
Batista, L. S., E. A. Garcia, A. B. G. Faitarone, M. R. Sherer, C. Mori, K. Pelicia, and C. C. Pizzolante. 2007. Flavonoids and Mannanoligosaccharides in Broiler Diets. Braz. Rev. J. Poult. Sci. 9: 33-37.
Cano-Sarabia, M. and D. Maspoch. 2015. Nanoencapsulation. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht.
Collado-gonzalez, M., M. G. Montalban, J. Pena-Garcia, and H. Perez-Sanchez. 2017. Chitosan as stabilizing agent for negatively charged nanoparticles. Carbohydr. Polym. 161: 63-70.
Danaei, M., M. M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, and M. R. Mozafari. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10: 57.
Debnath, S., R. S. Kumar, and M. N. Babu. 2011.Ionotropic Gelation – A Novel Method to Prepare Chitosan Nanoparticles. Research J. Pharm. Tech. 4: 492-495.
Di Santo, M. C., C. L. D' Antoni, A. P. Domínguez Rubio, A. Alaimo, and O. E. Pérez. 2021. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications - A review. Biomed. Pharmacother. 142: 1-24.
Ebrahimi, A., A. A. A. Qotbi, A. Seidavi, and B. Bahar. 2014. The effects of dietary supplementation of Citrus sinensis peel extract on production and quality parameters of broiler chicken. J. Appl. Anim. Res. 42: 445-450.
Enaru, B., S. Socaci, A. Farcas, C. Socaciu, C. Danciu, A. Stanila, and Z. Diaconeasa. 2021. Novel delivery systems of polyphenols and their potential health benefits. Pharmaceuticals (Basel) 14: 946.
Ghasemi, S., S. M. Jafari, E. Assadpour, and M. Khomeiri. 2017. Production of pectin-whey protein nano-complexes as carriers of orange peel oil. Carbohydr. Polym. Food Hydrocoll. 177: 152–162.
Gheisar, M. M. and I. H. Kim. 2018. Phytobiotics in poultry and swine nutrition. Ital. J. Anim. Sci. 17: 92-99.
Goliomytis, M., D. Tsoureki, P. E. Simitzis, M. A. Charismiadou, A. L. Hager Theodorides, and S. G. Deligeorgis. 2014. The effects of quercetin dietary supplementation on broiler growth performance, meat quality, and oxidative stability. J. Poult. Sci. 93: 1957-1962.
Hassan, F. M., E. M. Roushdy, A. T. W. Kishawy, A. W. Ziglool, H. A. Tukur, and I. M. Saadeldin. 2019. Growth performance, antioxidant capacity, lipid- related transcript expression and the economics of broiler chickens fed different levels of rutin. Animals 9: 7-11.
Honary, S. and F. Zahir. 2013. Effect of zeta potential on the properties of nano-drug delivery systems - A Review (Part 1). Trop. J. Pharm. Res. 12: 255-264.
Iswanti, F. C., I. Nurulita, S. Djauzi, M. Sadikin, A. B. Witarto, and T. Yamazaki. 2019. Preparation, characterization, and evaluation of chitosan-based nanoparticles as CpG ODN carriers. Biotechnol. Biotechnol. Equip. 33: 390-396.
Kim, S., K. Lee, C. Kang, and B. An. 2016. Growth performance; relative meat and organ weights; cecal microflora and blood characteristics in broiler chickens fed diets containing different nutrient density with or without essential oils. Asian- Australas. J. Anim. Sci. 29: 549-554.
Lee, K., J. Kim, S. Oh. C. Kang, and B. An. 2015. Effects of dietary sanguinarine on growth performance; relative organ weight; cecal microflora; serum cholesterol level and meat quality in broiler chickens. J. Poult. Sci. 52: 15-22.
Liang, J., H. Yan, X. Wang, Y. Zhou, X. Gao, P. Puligundla, and X. Wan. 2017. Encapsulation of Epigallocatechin Gallate in Zein/Chitosan Nanoparticles for Controlled Application in Food Systems. Food Chem. 231: 19-24.
Li, L., X. Sun, D. Zhao, and H. Dai. Pharmacological Applications and Action Mechanisms of Phytochemicals as Alternatives to Antibiotics in Pig Production. Front. Immunol. 12: 1-18.
Majekodunmi, B. C., M. O. Lugunleko, E. O. Adekunie, M. O. Abioja, O. F. Akinjunte, T. O. Owalabi, and J. O. Daramola. 2021. Evaluation of sweet citrus peel supplement in water on performance and ileal microbial count of broiler chicken. Trop. Health. Anim. Prod. 53: 405.
Marin, L., E. M. Miguelez, C. J. Villar, and F. Lombo. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res. Int. 2015: 1-18.
Martien, R., A. Adhyatmika, V. Farid and D. P. Sari. 2012. Technology developments nanoparticles as drug delivery systems. Majalah Farmaseutik 8: 133-144.
Mishra, B. and R. Jha. 2019. Oxidative stress in the poultry gut: potential challenges and interventions. Front. Vet. Sci. 6: 1-5.
Mora-huertas, C. E., H. Fessi, and A. Elaissari. 2010. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385: 113-142.
National Research Council (NRC). 1994. Nutrient Requirements of Poultry: Ninth Revised Edition. The National Academies Press. Washington, DC.
Oudih, S. B., D. Tahtat, A. N. Khodja, M. Mahlous, Y. Hammache, Abd-Errahim Guittoum, and S. K. Ghana. 2022. Chitosan nanoparticles with controlled size and zeta potential. Polym. Eng. Sci. 63: 1-11.
Pateiro, M., B. Gomez, P. E. S. Munekata, F. J. Barba, P. Putnik, D. B. Kovacevi, and J. M. Lorenzo. 2021. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 26: 1547.
Ramanery, F. P., A. A. P. Mansur, and H. S. Mansur. 2013. One-step colloidal synthesis of biocompatible water- soluble ZnS quantum dot / chitosan nanoconjugates. Nanoscale Res. Letters 8: 1-13.
Rashidinejad, A. and S. M. Jafari. 2020. Nanoencapsulation of Bioactive food Ingredients. In: Handbook of Food Nanotechnology: Application and Approaches. S.M. Jafari (ed). Academic Press, Cambridge, United States, pp. 279-344
Reis, C. P., R. K. Neufeld, A. J. Ribeiro, and F. Veiga. 2006. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed.: Nanotechnol. Biol. Med. 2: 8-21.
Shah, B. R., L. Yan, W. J. Weiping, A. Yaping, H. Lei, L. Zhenshun, X. Wei, and L. Bin. 2016. Preparation and optimization of pickering emulsion stabilized by chitosan tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocoll. 52: 369-377.
Sharif, M. K., Faiz-ul-Hassan Shah, M. S. Butt, and H. R. Sharif. 2017. Role of Nanotechnology. In: Enhancing Bioavailability and Delivery of Dietary Factors. In: Nutrient Delivery. Academic Press, Cambridge, pp. 587-618.
Sudarman, A., Sumiati and R. Kanidewi. 2012. Performance of broiler chickens offered drinking water contained water extracted beluntas (Pluchea indica L.) leaf and sugar cane. Media Peternakan 35: 117-122.
Wang, Z., X. Mei, X. Chen, S. Rao, T. Ju, J. Li, and Z. Yang. 2023. Extraction and recovery of bioactive soluble phenolic compounds from brocade orange (Citrus sinensis) peels: Effect of different extraction methods thereon. Food Sci. Technol. 173: 1-11.
Yakhkeshi, S., S. Rahimi and K. Gharib Naseri 2011. The effects of comparison of herbal extracts, antibiotic, probiotic and organic acid on serum lipids, immune response, GIT microbial population, intestinal morphology and performance of broilers. J. Med. Plants 10: 80-95.
Zhang, J. K., C. D. Sun, Y. Y. Yan, Q. J. Chen, F. L. Luo, X. Y. Zhu, X. Li, and K. S. Chen. 2012. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chem. 135: 1471-1478.
Zhu, C. H., X. Y. Zhou, C. R. Long, Y. X. Du, Li, J. J. Yue and S. Y. Pan. 2020. Variations of flavonoid composition and antioxidant properties among different cultivars, fruit tissues and developmental stages of citrus fruits. Chem. Biodivers. 17, Article e1900690.
DOI: https://doi.org/10.21059/buletinpeternak.v48i3.91801
Article Metrics
Abstract views : 380 | views : 150Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Buletin Peternakan (Bulletin of Animal Science) Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.