Expression of Myostatin Gene in Belgian Blue and Ongole Grade Crossbred Cattle

https://doi.org/10.21059/buletinpeternak.v46i1.69784

Winni Liani Daulay(1), Putri Indah Ningtias(2), Cece Sumantri(3), Jakaria Jakaria(4*)

(1) Department of Animal Production and Technology, Faculty of Animal Science, IPB University
(2) Livestock Embryos Centre (LEC) Cipelang, Bogor, West Java 16740, Indonesia
(3) Department of Animal Production and Technology, Faculty of Animal Science, IPB University
(4) Department of Animal Production and Technology, Faculty of Animal Science, IPB University
(*) Corresponding Author

Abstract


Investigating Myostatin (MSTN) as a potent inhibitor of skeletal muscle growth and development to produce excessive muscles is extremely essential for livestock breeding. This study aimed to analyze the expression of the MSTN gene and its relationships with genotype and phenotype (normal-muscled vs double-muscled) of Belgian Blue (BB) x Ongole Grade (PO) crossbred cattle. For that purpose, 12 animals from BB, PO, BB x PO F1, and BB x PO F2 cattle (3 animals each) raised at Balai Embrio Ternak (BET) Cipelang Bogor, West Java were used for blood sample collection. Genotyping analysis was performed using the PCR-RFLP method withprimer F: 5’-CTC TTC TTT CCT TTC CAT ACA GAC-3’ and R: 5’-AGG GGA AGA CCT TCC ATG TT-3’, while the MSTN gene expression was analyzed using the qPCR technique. As results, three genotypes: del.11/del.11, +/del.11, and +/+ were detected. The del.11/del.11 genotype, which showed a double-muscled phenotype was found in BB cattle and BB x PO F2 cattle. The +/del.11 genotype was found in BB x PO F1 cattle and BB x PO F2 cattle. The +/+ genotype, which showed a normal phenotype was only detected in PO cattle. There was a significant difference of the MSTN gene expression in the sampled animals among genotypes and between phenotypes (normal-muscled vs double muscled). The MSTN expression in animals with del.11/del.11 genotype was higher than that in animals with +/del11 and +/+ genotypes (P<0.05). Animals with +/+ genotype showed the lowest MSTN expression. It was concluded that double-muscled animals showed higher MSTN expression than normal-muscled animals.


Keywords


Cattle; Crossbreeding; MSTN gene; PCR-RFLP; q-PCR

Full Text:

PDF


References

Agung, P. P., S. Said, and A. Sudiro, 2016. Myostatin gene analysis in the first generation of the Belgian Blue cattle in Indonesia. J. Indonesian Trop. Anim. Agric. 41: 13–20.

Ahad, W. A., M. Andrabi, S. A. Beigh, R. A. Bhat, and R. A. Shah. 2017. Applications of Myostatin (MSTN) gene in the livestock animals and humans: A Review. Int. J. Curr. Microbiol Appl. Sci. 6: 1807–1811.

Arthur, P. 1995. Double muscling in cattle: a review. Aust. J. Agric. Res. 46: 1493-1515.

Arthur, P., M. Makarechian, and M. Price. 1988. Incidence of dystocia and perinatal calf mortality resulting from reciprocal crossing of double-muscled and normal cattle. Can. Vet. J. 29: 163-167.

Bellinge R. H., D. A. Liberles, S. P. Iaschi, P. A. O'brien, and G. K. Tay. 2005. Myostatin and its implications on animal breeding: a review. Anim. Genet. 36: 1-6.

Blasi, D., W. Lamm, J. Tatum, and J. Brinks. 1991. Growth and fertility traits of calves sired by Piedmontese, Gelbvieh and Red Angus bulls. Livest. Prod. Sci. 31: 259-269.

Boman, I. A., G. Klemetsdal, T. Blichfeldt, O. Nafstad, and D. I. Våge. 2009. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White sheep (Ovis aries). Anim Genet. 40: 418–422.

Cassar-Malek, I., F. Passelaigue, C. Bernard, J. Léger, and J. F. Hocquette. 2007. Target genes of myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics. 8: 1–11.

Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibé, J. Bouix, F. Caiment, J. M. Elsen, F. Eychenne, C. Larzul, E. Laville, F. Meish, D. Milenkovic, J. Tobin, C. Charlier, and M. Georges. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 38: 813–818.

Freetly, H. C., L. A. Kuehn, and L. V. Cundiff. 2011. Growth curves of crossbred cows sired by Hereford, Angus, Belgian Blue, Brahman, Boran, and Tuli bulls, and the fraction of mature body weight and height at puberty. J. Anim. Sci. 89: 2373–2379.

Gao, F., B. Sun, S. Xing, X. Yu, C. Lu, A. Li, . Zhao, and R. Yang. 2014. The effect of leader peptide mutations on the biological function of bovine myostatin gene. Gene. 540: 171-177.

Gill, J. L., S. C. Bishop, C. Mc Corquodale, J. L. Williams, and P. Wiener. 2008. Associations between the 11-bp deletion in the myostatin gene and carcass quality in Angus-sired cattle. Anim. Genet. 40: 97–100.

Goni, S., C. C. J. Muller, B. Dube, and K. Dzama. 2016. Effect of crossbreeding on beef production of Jersey herd using Fleckvieh sires maintained on a pasture-based feeding system. Open J. Anim. Sci. 06: 163–168.

Grisolia, A. B., G. T. D’Angelo, L. R. P. Neto, F. Siqueira, and J. F. Garcia. 2009. Myostatin (GDF8) single nucleotide poly- morphisms in Nellore cattle. Genet. Mol. Rese. 8: 822-830.

Hamny. 2020. Skrining Pengembangan Sapi Aceh dari Peternakan Rakyat dengan Tinjauan Khusus pada Mikrostruktur Otot dan Ekspresi Gen Myostatin. PhD Thesis. IPB University, Bogor, Indonesia.

Han, S. H., I. C. Cho, M. S. Ko, E. Y. Kim, S. P. Park, S. S. Lee, and H. S. Oh. 2012. A promoter polymorphism of MSTN g.2371T>A and its associations with carcass traits in Korean cattle. Mol. Bil. Rep. 39: 3767-3772.

Hu, S., W. Ni, W. Sai, H. Zi, J. Qiao, P. Wang, J. Sheng, and C. Chen. 2013. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PLoS ONE. 8: e58521.

Jakaria, J., E. Edwar, M. F. Ulum, and R. Priyanto. 2019. Evaluasi kinerja pertumbuhan sapi silangan Belgian blue dan Peranakan Ongole. J. Agripet. 19: 136–141.

Jakaria, J., W. L. N. Aliyya, R. Ismail, S. Y. Siswanti, M. F. Ulum, and R. Priyanto. 2021. Discovery of SNPs and indel 11-bp of the myostatin gene and its association with the double-muscled phenotype in Belgian blue crossbred cattle. Gene. 784: 145-598.

Jeanplong, F., M. Sharma, W. G. Somers, J. J. Bass, and R. Kambadur. 2001. Genomic organization and neonatal expression of the bovine Myostatin gene. Mol Cell Biochem. 220: 31-37.

Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian blue and Piedmontese Cattle.

Khasanah, H., A. Gunawan, R. Priyanto, M. F. Ulum, and Jakaria. 2016. Polymorphism of myostatin (MSTN) promoter gene and its association with growth and muscling traits in Bali cattle. Media Peternakan 39: 95-103.

Kim, T. 2015. T test as a parametric statistic. Korean J. Anesthesiol. 68: 540–546.

Kišacová, J., A. Kúbek, V. Meluš, Z. Čanakyová, and V. Řehout. 2009. Genetic polymorphism of myf-5 and myostatin in charolais breed. J. Agrobiol. 26: 7-11.

Kolkman, I., G. Opsomer, S. Aerts, G. Hoflack, H. Laevens, and D. Lips. 2010. Analysis of body measurements of newborn purebred Belgian Blue calves. Animal. 4: 661–671.

Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 25: 402–408.

Marchitelli, C., M. C. Savarese, A. Crisà, A. Nardone, P. A. Marsan, and A. Valentini. 2003. Double muscling in Marchigiana beef breed is caused by a stop codon in the third exon of myostatin gene. Mamm Genome. 14: 392–395.

McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proceedings, The National Academy of Sciences of the United States of America, Johns Hopkins University School of Medicine, Baltimore, United States of America, August 26, 1997. P. 12457–12461.

McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 387: 83–90.

Oldham, J. M., J. A. K. Martyn, M. Sharma, F. Jeanplong, R. Kambadur, and J. J. Bass. 2001. Molecular expression of myostatin and MyoD is greater in double-muscled than normal-muscled cattle fetuses. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 280: 1488-1493.

Osman, N. M., H. I. Shafey, M. A. Abdelhafez, A. M. Sallam, and K. F. Mahrous. 2021. Genetic variations in the Myostatin gene affecting growth traits in sheep. Vet. World. 14: 475–482.

Patel, K. and H. Amthor. 2005. The function of myostatin and strategies of myostatin blockade - New hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscular Disord. 15: 117–126.

Pelley, J. W. 2012. Protein Synthesis and Degradation. In Elsevier’s Integrated Review Biochemistry. 2nd edn. W.B. Saunders, Lubbock. 149-160.

Prihandini, P. W., D. N. H. Hariyono, and Y. A. Tribudi. 2021. Myostatin gene as a genetic marker for growth and carcass traits in beef cattle. Indones. Bull. Anim. Vet. Sci. 31: 37.

Purchas, R. W., S. T. Morris, and D. A. Grant. 1992. A comparison of characteristics of the carcasses from Friesian, Piedmontese × Friesian, and Belgian blue × Friesian bulls. New Zeal. J. Agric. Res. 35: 401–409.

Qian, L., M. Tang, J. Yang, Q. Wang, C. Cai, S. Jiang, H. Li, K. Jiang, P. Gao, D. Ma, Y. Chen, X. An, K. Li., and Cui W. 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Sci. Rep. 5: 1–13.

Romjali, E. 2018. Program pembibitan sapi potong lokal Indonesia. Wartazoa. 28: 190-210.

Sarti, F. M., E. Lasagna, S. Ceccobelli, P. Di Lorenzo, F. Filip- pini, F. Sbarra, and A. Giontella. 2014. Influence of single nucleotide polymorphism in myostatin and myogenic factor 5 muscle growth-related genes on the performance traits of Marchigiana beef cattle. J. Anim. Sci. 92: 3804-3810.

Short, R. E., M. D. MacNeil, M. D. Grosz, D. E. Gerrard, and E. E. Grings. 2002. Pleiotropic effects in Hereford, Limousin, and Piedmontese F2 crossbred calves of genes controlling muscularity including the Piedmontese myostatin allele. J. Anim. Sci. 80: 1-11.

Tagliapietra, F., A. Simonetto, and S. Schiavon. 2018. Growth performance, carcase characteristics and meat quality of crossbred bulls and heifers from double-muscled Belgian Blue sires and Brown Swiss, Simmental and Rendena dams. Ital. J. Anim. Sci. 17: 565–573.

Takahashi, H., K. Sato, T. Yamaguchi, M. Miyake, H. Watanabe, Y. Nagasawa, E. Kitagawa, S. Terada, M. Urakawa, M. T. Rose, C. D. McMahon, K. Watanabe, S. Ohwada, T. Gotoh, and H. Aso. 2014. Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle. Domest. Anim. Endocrinol. 48: 62-68.

Weaber, R. L. 2015. Crossbreeding Strategies: Including terminal vs. maternal crosses. Proceedings, Symposium 24, The Range Beef Cow, Kansas State University, Loveland, Colorado, November 17, 18 and 19, 2015. 17: 2–15.

Zhang, C., Y. Liu, D. Xu, Q. Wen, X. Li, W. Zhang, and L. Yang. 2012. Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance. Mol. Biol. Rep. 39: 3081–3087.



DOI: https://doi.org/10.21059/buletinpeternak.v46i1.69784

Article Metrics

Abstract views : 2977 | views : 2026

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.