Multivariate Analysis of Thermal Adaptive Profile of Three Genetic Groups of Duck

Abel Oguntunji(1*), Opeyemi Adetola Oladejo(2), Mathew Oluseyi Ayoola(3), Lopemi Opeoluwa Oriye(4), Opeyemi Olufemi Ogundijo(5), Abiola Olufunke Ilufoye(6)

(1) Department of Animal Science and Fisheries Management, Bowen University, P.M.B. 284, Iwo, Osun State, Nigeria
(2) Department of Animal Science and Fisheries Management, Bowen University, P.M.B. 284, Iwo, Osun State, Nigeria
(3) Department of Animal Science and Fisheries Management, Bowen University, P.M.B. 284, Iwo, Osun State, Nigeria
(4) Department of Animal Science and Fisheries Management, Bowen University, P.M.B. 284, Iwo, Osun State, Nigeria
(5) Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
(6) Federal College of Animal Production, Moor Plantation, Ibadan, Oyo State, Nigeria
(*) Corresponding Author


Inherent thermal adaptation in livestock is an important economic trait that cannot be overlooked, most especially in animals reared in sub-optimal thermally stressful environments. The present study explored the possibility of using multifactorial discriminant analysis (DA) to separate two duck genera {Muscovy and Common (Mallard) ducks) and their hybrid (Mule ducks) to distinct genetic groups using physiological, haematological and biochemical parameters. Data were collected after exposure of ducks to solar radiation for 90 minutes (12.00 – 13.30 hours). The result of analysis of variance indicated that genotype significantly (P<0.05) affected heamoglobin (Hb), basophil (Bas), total protein (TP), albumin (Alb), globulin (Glb), skin temperature (SKT), respiratory rate (RRT), panting rate (PTR) and rectal temperature (RTC). Stepwise DA revealed that PTR, RRT, Bas and TP in descending order were the most important parameters discriminating the three duck genotypes. The result of cross validation showed that 71.00%, 97.30% and 50.00% of Muscovy, Common and Mule ducks were correctly classified in their expected genetic group respectively. The Euclidean distance between the duck genotypes indicated that longest distance (86.507) was between Muscovy and Common (Mallard) ducks while shortest distance (12.415) was between Muscovy and Mule ducks. The results are applicable in breed adaptation studies, management, conservation and improvement programmes.


Discriminant analysis; Duck genera; Euclidean distance; Mule duck; Panting rate; Thermal adaptation

Full Text:



Adeyemi, O. A., R. A. Sobayo and F. A. Aluko. 2008. A survey of duck farming activities in Abeokuta metropolis of Ogun State, Nigeria. Nig. Poult. Sci. J. 5: 23-29.

Aengwanich, W. 2008. Comparative ability to heat between Thai indigenous chickens, Thai indigenous chickens crossbred and broilers by using percentage of lymphocyte. Intl.  J. Poult. Sci. 7: 1071 -1073.

Baccari, J.  F. 1986. Métodos e técnicas de avaliação da adaptabilidade dos animais nos trópicos. Semana de Zootec.11: 53-64. (In Portuguese).

Calder, W. A. and K.Shimdt-Neilsen. 1966. Evaporative cooling and respiratory alkalosis in thepigeon.Proceed. National Acad. Sci. 55: 750-756.

Castanheira, M., S. R. Paiva, H. Louvandini, A. V. Landim, M. C. S. Fioravanti, B. S. Dallago.  P. S. Correa  and C. Mcmanus. 2010. Use of heat tolerance traits in discriminating between groups of sheep in central Brazil. Trop.  Anim. Hlth.  Prod. 42: 1821–1828.

Daramola, J. O. and A. A. Adeloye. 2009. Physiological adaptation to the humid tropics with special reference to the West African Dwarf (WAD) goat. Trop.  Anim. Hlth.  Prod. 41: 1005-1016.

Erickson, H. H .and D. C. Poole.  2006. Fisiologia do exercício. In: Reece, W. O. Dukes Fisiol. Anim. domésticos. Ed.12. Rio de janeiro: Guanabara Koogan.

Fadare, A. O., S. O. Peters, A. Yakubu, A. O. Sonibare, M. A. Adeleke, M. O. Ozoje and I. G. Imumorin. 2012. Physiological and haematological indices suggest superior heat tolerance of white-coloured West African Dwarf sheep in the hot humid tropics. Trop.  Anim. Hlth. Prod. 45:157-165.

Finch, V. A. 1986. Body temperature in cattle: Its control and relevance to production in the tropics. J.  Anim. Sci. 62: 531-542.

Foster, L. A., P. J. Fourie, and F. W. C. Neser. 2009. Effect of heat stress on six beef breeds in the Zastron district: The significance of breed, coat colour and coat type. S. Afri. J. Anim. Sci. 39 (Supplement 1): 224-228.

Ganaie, A. H.,  G. Shanker, N. A. Bumla, R. S. Ghasura, N. A. Mir, S. A. Wani, and G. B. Dudhatra. 2013.Biochemical and physiological changes during thermal stress in bovines.  J. Vet. Sci. Tech. 4:1 

Gupta, M., S. Kumar, S. S. Dangi and B. L. Jangir. 2013.Physiological, biochemical and molecular responses to thermal stress in goats. Intl. J. Lives. Res. 3: 26–38.

Ilori, B. M., S. O. Peters, A. Yakubu, I. G. Imumorin,  M. A. Adeleke, M. O. Ozoje, C. O. N. Ikeobi and O. A. Adebambo. 2011.  Physiological adaptation of local, exotic and crossbred turkeys to the hot and humid tropical environment of Nigeria. Acta Agric. Scand. Section A-Animal Science. 61: 204-209.

Marai, I. F. M., A .A. El-Darawany, A. Fadiel, and M. A. M. Abdel-Hafez. 2007. Physiological traits asaffected by heat stress in sheep—A review. Small Rum. Res.  71: 1–12.

Maxwell,  M. H., G. W. Robertson,  and M. A. Mitchell. 1992. The fine structure of broiler chickenblood cells, with particular reference to Basophils, after severe heatstress. Comp. Haematol. Intl.  2: 190-200.

Mcmanus, C., H. Louvandini, R. Gugel, L. C. B. Sasaki, E. Bianchini, F. E. M. Bernal, M. Paiva, S. R. and T. P. Paim. 2011.  Skin and coat traits in sheep in Brazil and their relation with heat tolerance. Trop.  Anim. Hlth.  Prod.43: 121-126.

Mcmanus, C., G. R. Paludo, H. Louvandini, J. A. S. Garcia, A. A. Egito, and A. S. Mariante.2005. Heat tolerance in naturalised cattle in Brazil: Physical factors. Archiv. Zootec.54:453-458.

Melesse,  A. 2011. Performance and physiological responses of naked-neck chickens and their F1 crosses with commercial layer breeds to long-term high ambient temperature. Global Vet. 6: 272-280.

Mota, L. S. 1997. Adaptação e interação genótipo-ambiente em vacas leiteiras. 69 p. Doctor´s Thesis, Universidade de São Paulo, Ribeirão Preto.

Nwanta, J. A., J. U. Umoh, P. A. Abdu, I. Ajogi and J. K. Ali–Balogun. 2006. Management of losses and Newcastle disease in rural poultry in Kaduna State. Nig. J. Anim. Prod. 33:274-285.

Oguntunji, A. O. 2013. Phenotypic and biochemical characterization of the Nigerian Muscovyducks.Ph. D. Dissertation. Bowen University. Iwo.

Oguntunji, A. O. and K. L. Ayorinde. 2014.  Multivariate analysis of morphological traits of theNigerian Muscovy ducks (Cairina moschata). Archiv. Zootec.63: 483-493.

Oguntunji, A. O. and K. L. Ayorinde. 2015. Duck production in Nigeria: Flock characteristics, management and mortality.   Archiva Zootech.18: 27-40.

Oguntunji, A. O., F. A. Aderemi, T. E. Lawal and O. M. Alabi. 2008. The influence of seasonal variation on performance of a commercial laying strain in a derived savannahenvironment in Nigeria. Nig. Poult. Sci. J.5: 75-82.

Oguntunji,  A. O. and O. M. Alabi. 2010. Influence of high environmental temperature on egg production and shell quality- a review. World’s Poult. Sci. J.64: 739-750.

Oguntunji,  A. O., O. A. Oladejo  and K. L.  Ayorinde. 2015. Seasonal variation in egg production and mortality of Muscovy ducks (Cairina moschata).Biotech. Anim. Husb.31: 181-192.

Oguntunji, A. O., O. A. Oladejo, M. O.  Ayoola, I. Oluwatomini ,L. O. Oriye and  I. M. Egunjobi. 2019. Genetic variation in physiological adaptation of local, exotic and crossbred ducks to heat stress in a tropical environment. Genet. Biodiv. J.3: 35-45.

Okonkwo, J. C., J. S. Omeje and I. F. Okonkwo. 2011.  Effect of source and sex on blood protein fractions of West African dwarf goats (WADG). Res. Opinion Vet. Sci. 1: 158-161.

Omiyale, C. A., A. G. Yisa and L. A. Ali-Dunkrah. 2012.  Haemotological characteristics of Yankasa sheep fed fanio (Digitaria iburua) straw.

Sharma, S., K. H. I., Ramesh, S. Uniyal, V. P. Yadav, R. P. Panda, V. P. Maurya, G. Singh, P. Kumar, A. Mitra and M. Sarkar. 2013. Effect of melatonin administration on thyroid hormones, cortisol and expression profile of heat shock proteins in goats (capra hircus) exposed to heat stress. Small Rum. Res. 112: 216-223.

Shelton, M. 2000.  Reproductive performance of sheep exposed to hot environments. In: Sheep Production in Hot and Arid zones.R.C. Malik, M.A.Razzaque, A.Y. Al-Nasser (eds.). Kuwait Institute for Scientific Research, Safat, Kuwait 155–162.

Soetan, K. O., A. S. Akinrade and T. O. Ajibade. 2013. Preliminary studies on the haematological parameters of cockerels fed raw and processed guinea corn. Proceed. 38th Annual Conf. Nig. Soc. Anim. Prod. 49-52.

SPSS. 2001. Statistical Package for Social Sciences. SPSS Inc., 444 Michigan Avenue, Chicago, IL60611.

Yahav, S. and S. Hurwitz. 1996.  Induction of thermo-tolerance in male broiler chickens bytemperature conditioning at an early age. Poult. Sci. 75: 402-406.

Yakubu,  A., S. O. Peters, B. M. Ilori, I. G. Imumorin, M. A. Adeleke, M. I. Takeet, M. O., Ozoje C. O. N, Ikeobi and O. A. Adebambo. 2012.  Multifactorial discriminant analysis ofmorphological and heat-tolerant traits in indigenous, exotic and cross-bred turkeys in Nigeria. Anim. Genet. Res. 50: 1–7.

Yousef, M. K. 1985. Stress Physiology in Livestock: Basic Principles. Volume 1 CRC Press, Boca Raton, FL. Page 101.





Article Metrics

Abstract views : 396 | views : 324


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

 Harvard Library
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.