PROTEIN FRACTIONATION AND UTILIZATION OF SOYBEAN AND REDBEAN AS AFFECTED BY DIFFERENT DRYING TEMPERATURE

https://doi.org/10.21059/buletinpeternak.v41i1.13922

Anuraga Jayanegara(1*), Yesi Chwenta Sari(2), Roni Ridwan(3), Didid Diapari(4), Erika Budiarti Laconi(5)

(1) Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor 16680
(2) Graduate School of Nutrition and Feed Science, Bogor Agricultural University, Bogor, 16680
(3) Biotechnology Research Center, Indonesian Institute of Sciences (LIPI), Bogor, 16911
(4) Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, 16680
(5) Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, 16680
(*) Corresponding Author

Abstract


The objective of this study was to investigate the influence of different drying temperature on chemical composition, in vitro rumen fermentation and digestibility of soybean and redbean. Soybean and redbean were dried in an oven set at four different drying temperatures, i.e. 50, 60, 70 and 80 oC for 24 h in three replicates. Dried samples were then milled and used further for chemical composition determination (proximate analysis, Van Soest analysis and protein fraction) and in vitro rumen fermentation assay. Parameters measured in the in vitro assay were gas production, digestibility, pH, ammonia and volatile fatty acids (VFA). Data obtained were analyzed by using analysis of variance and a posthoc test namely Duncan’s multiple range test. Results revealed that neutral detergent insoluble crude protein (NDICP) content increased at higher drying temperature (70 or 80 oC) for both soybean and redbean (P<0.05) but at different magnitude. As with NDICP, higher temperature led to a higher acid detergent insoluble crude protein (ADICP) both in soybean and redbean (P<0.05). Higher temperature decreased gas production rate (GPR) of both beans (P<0.05). Drying of soybean at 70 or 80 oC decreased crude protein digestibility (CPD) of soybean than dried at 50 or 60 oC (P<0.05). Higher drying temperature resulted in a lower NH3 concentration (P<0.05). It can be concluded that drying temperature at 50 or 60 oC is safe to maintain nutritional quality of soybean and redbean.

Keywords


Drying temperature, Protein fraction, In vitro fermentation, Soybean, Redbean

Full Text:

PDF


References

Akbarian, A., M. Khorvash, G. R. Ghorbani, E. Ghasemi, M. Dehghan-Banadaky, P. Shawrang and M. H. Ghaffari. 2014. Effects of roasting and electron beam irradiating on protein characteristics, ruminal degradability and intestinal digestibility of soybean and the performance of dairy cows. Livest. Sci. 168: 45-52.

AOAC. 2005. Official Methods of Analysis. 18th Edition. AOAC International, Arlington, VA, USA.

Astuti, A., A. Agus dan S. P. S. Budhi. 2009. Pengaruh penggunaan high quality feed supplement terhadap konsumsi dan kecernaan nutrien sapi perah awal laktasi. Bul. Pet. 33: 81-87.

Avila-Stagno, J., A. V. Chaves, G. Ribeiro, E. M. Ungerfeld and T. A. McAllister. 2014. Inclusion of glycerol in forage diets increases methane production in a rumen simulation technique system. Brit. J. Nutr. 111: 829-835.

Bach, A., S. Calsamiglia and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88 (E. Suppl.): E9-E21.

Buccioni, A., M. Decandia, S. Minieri, G. Molle and A. Cabiddu. 2012. Lipid metabolism in the rumen: new insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 174: 1-25.

De Boever, J. L., J. M. Aerts, J. M. Vanacker JM and D. L. De Brabander. 2005. Evaluation of the nutritive value of maize silages using a gas production technique. Anim. Feed Sci. Technol. 123-124: 255-265.

Endrawati, E., E. Baliarti dan S. P. S. Budhi. 2010. Performans induk sapi silangan Simmental-Peranakan Ongole dan induk sapi Peranakan Ongole dengan pakan hijauan dan konsentrat. Bul. Pet. 34: 86-93.

Fievez, V., E. Colman, J. M. Castro-Montoya, I. Stefanov and B. Vlaeminck. 2012. Milk odd- and branched-chain fatty acids as biomarkers of rumen function-an update. Anim. Feed Sci. Technol. 172: 51-65.

Getachew, G., M. Blummel, H. P. S. Makkar and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72: 261-281.

Gonzalez, L. A., X. Manteca, S. Calsamiglia, K. S. Schwartzkopf-Genswein and A. Ferret. 2012. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review). Anim. Feed Sci. Technol. 172: 66-79.

Jayanegara, A., A. Sofyan, H. P. S. Makkar dan K. Becker. 2009. Kinetika produksi gas, kecernaan bahan organik dan produksi gas metana in vitro pada hay dan jerami yang disuplementasi hijauan mengandung tanin. Med. Pet. 32: 120-129.

Jayanegara, A., T. Sabhan, A. K. Takyi, A. O. Salih and E. M. Hoffmann. 2010. Ruminal fermentation kinetics of moringa and peltiphyllum supplements during early incubation period in the in vitro Reading pressure technique. J. Indonesian Trop. Anim. Agric. 35: 165-171.

Jayanegara, A., M. Kreuzer and F. Leiber. 2012. Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livest. Sci. 147: 104-112.

Jayanegara, A., S. P. Dewi and M. Ridla. 2016a. Nutrient content, protein fractionation and utilization of some beans as potential alternatives to soybean for ruminant feeding. Med. Pet. (in revision).

Jayanegara, A., S. P. Dewi, N. Laylli, E. B. Laconi, Nahrowi and M. Ridla. 2016b. Determination of cell wall protein from selected feedstuffs and its relationship with ruminal protein digestibility in vitro. Med. Pet. 39: 134-140.

Khan, N. A., Q. Peng, H. Xin and P. Yu. 2015. Vibrational spectroscopic investigation of heat-induced changes in functional groups related to protein structural conformation in camelina seeds and their relationship to digestion in dairy cows. Anim. Prod. Sci. 55: 201-206.

Kumar, R. B. 2012. A review on freeze drying process and technologies. Int. J. Pharm. Technol. 4: 2215-2243.

Laconi, E. B., and A. Jayanegara. 2015. Improving nutritional quality of cocoa pod (Theobroma cacao) through chemical and biological treatments for ruminant feeding: in vitro and in vivo evaluation. Asian Australas. J. Anim. Sci. 28: 343-350.

Li, F., X. J. Yang, Y. C. Cao, S. X. Li, J. H. Yao, Z. J. Li and F. F. Sun. 2014. Effects of dietary effective fiber to rumen degradable starch ratios on the risk of sub-acute ruminal acidosis and rumen content fatty acids composition in dairy goat. Anim. Feed Sci. Technol. 189: 54-62.

Licitra, G., T. M. Hernandez and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57: 347-358.

Lin, J. T., S. C. Liu, C. C. Hu, Y. S. Shyu, C. Y. Hsu and D. J. Yang. 2016. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem. 190: 520-528.

Lourenco, M., E. Ramos-Morales and R. J. Wallace. 2010. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4: 1008-1023.

Marwah, M. P., Y. Y. Suranindyah dan T. W. Murti. 2010. Produksi dan komposisi susu kambing Peranakan Ettawa yang diberi suplemen daun katu (Sauropus androgynus (L.) Merr) pada awal masa laktasi. Bul. Pet. 34: 94-102.

Maxin, G., D. R. Ouellet and H. Lapierre. 2013. Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. J. Dairy Sci. 96: 5151-5160.

McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair and R. G. Wilkinson. 2011. Animal Nutrition. 7th Edition. Prentice Hall, Harlow, UK.

Michalska, A., J. Honke, G. Lysiak and W. Andlauer. 2016. Effect of drying parameters on the formation of early and intermediate stage products of the Maillard reaction in different plum (Prunus domestica L.) cultivars. LWT Food Sci. Technol. 65: 932-938.

Noziere, P., F. Glasser and D. Sauvant. 2011. In vivo production and molar percentages of volatile fatty acids in the rumen: a quantitative review by an empirical approach. Animal 5: 403-414.

Pagan, S., R. M. Wolfe, T. H. Terrill and J. P. Muir. 2009. Effect of drying method and assay methodology on detergent fiber analysis in plants containing condensed tannins. Anim. Feed Sci. Technol. 154: 119-124.

Pelletier, S., G. F. Tremblay, A. Bertrand, G. Belanger, Y. Castonguay and R. Michaud. 2010. Drying procedures affect non-structural carbohydrates and other nutritive value attributes in forage samples. Anim. Feed Sci. Technol. 157: 139-150.

Pengpeng, W., and Z. Tan. 2013. Ammonia assimilation in rumen bacteria: a review. Anim. Biotechnol. 24: 107-128.

Purcell, P. J., M. O’Brien, T. M. Boland and P. O’Kiely. 2011. In vitro methane output of perennial ryegrass samples prepared by freeze drying or thermal drying (40 oC). Anim. Feed Sci. Technol. 166-167: 175-182.

Sagar, V. R., and P. S. Kumar. 2010. Recent advances in drying and dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 47: 15-26.

Sniffen, C. J., J. D. O’Connor, P. J. Van Soest, D. G. Fox and J. B. Russel. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70: 3562-3577.

Sudarman, A., M. Hayashida, I. R. Puspitaning, A. Jayanegara and H. Shiwachi. 2016. The use of cassava leaf silage as a substitute for concentrate feed in sheep. Trop. Anim. Health Prod. 48: 1509-1512.

Tan, L., S. Eberhard, S. Pattathil, C. Warder, J. Glushka, C. Yuan, Z. Hao, X. Zhu, U. Avci, J. S. Miller, D. Baldwin, C. Pham, R. Orlando, A. Darvill, M. G. Hahn, M. J. Kieliszewski and D. Mohnen. 2013. An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25: 270-287.

Tassone, S., G. Masoero and P.G. Peiretti. 2014. Vibrational spectroscopy to predict in vitro digestibility and the maturity index of different forage crops during the growing cycle and after freeze- or oven-drying treatment. Anim. Feed Sci. Technol. 194: 12-25.

Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48: 185-197.

Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597.

Weiss, W. P., C. T. Simons and R. D. Ekmay. 2015. Effects of feeding diets based on transgenic soybean meal and soybean hulls to dairy cows on production measures and sensory quality of milk. J. Dairy Sci. 98: 8986-8993.

Wellner, A., C. Huettl and T. Henle. 2011. Formation of Maillard reaction products during heat treatment of carrots. J. Agric. Food Chem. 59: 7992-7998.

Wulandari, S., A. Agus, M. Soejono, M. N. Cahyanto dan R. Utomo. 2014. Performa produksi domba yang diberi complete feed fermentasi berbasis pod kakao serta nilai nutrien tercernanya secara in vivo. Bul. Pet. 38: 42-50.

Zahera, R., I. G. Permana and Despal. 2015. Utilization of mungbean’s green house fodder and silage in the ration for lactating dairy cows. Med. Pet. 38: 123-131.

Zhang, Q., H. Su, F. Wang, Z. Cao and S. Li. 2015. Effects of energy density in close-up diets and postpartum supplementation of extruded full-fat soybean on lactation performance and metabolic and hormonal status of dairy cows. J. Dairy Sci. 98: 7115-7130.



DOI: https://doi.org/10.21059/buletinpeternak.v41i1.13922

Article Metrics

Abstract views : 3329 | views : 2740

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Buletin Peternakan (Bulletin of Animal Science) Indexed by:

   
 
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.