Effects of Ethylene Degreening on Peel Color, Physical Quality, and Chemical Content of Ambon Kuning (Musa acuminata Colla)


Ardhianata Triasmoko(1), Anggoro Cahyo Sukartiko(2*), Nafis Khuriyati(3)

(1) Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Indonesia
(2) Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Indonesia
(3) Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Indonesia
(*) Corresponding Author


The natural ripening of ambon kuning, a typical banana widely consumed in Indonesia, tends to produce a non-uniform yellowish peel color of the fruits. Some degreening techniques using calcium carbide or ethepon, although improving the peel color appearance, may pose a safety risk compared to ethylene degreening, a technique using ethylene gas, a gas naturally produced by the fruit. This study aimed to determine the effect of ethylene degreening on changes in peel color, physical quality, and chemical content of ambon kuning and determine the combination of treatment that produces the best results. Taguchi design, with two levels for each of the three treatment factors (ethylene gas concentrations of 185.2 and 277.8 ppm, storage temperatures of 16±1 and 29±1 °C, and gas exposure time of 48 and 72 hours) was applied to banana samples stored in a hermetic bag in a temperature-controlled container. Grey Relational Analysis (GRA) was applied to get the best results considering multiple performance measures: peel color (measured as lightness L*-, green -a*-, and yellow b*-values), hardness of peel and pulp, total dissolved solids, total chlorophyll, and total carotenoids contents. The best results were obtained when degreening was carried out with a gas concentration of 185.2 ppm at a storage temperature of 16±1 °C for 48 hours.


Ambon Kuning Banana; Ethylene Degreening; Grey Relational Analysis; Taguchi Method

Full Text:



Aini, N. 1994. Pengaruh Suhu dan Penambahan Gas Etilen Pada Kelembaban Tinggi Terhadap Kecepatan Proses Pemeraman dan Mutu Buah Pisang (Musa paradisiaca) cv. Ambon Putih. Thesis. Bogor: Institiut Pertanian Bogor.

Ali, M. M., Janius, R. B., Nawi, N. M., and Hashim, N. 2018. Prediction of Total Soluble Solids and pH in Banana Using Near-Infrared Spectroscopy. Journal of Engineering Science and Technology, Volume 13(1): 254–264.

Amin, M., Hossain, M., Rahim, M., and Uddin, M. 2015. Determination of Optimum Maturity Stage of Banana. Bangladesh Journal of Agricultural Research, Volume 40(2): 189–204. https://doi.org/10.3329/bjar.v40i2.24557

Belew, D., Park, D. S., Tilahun, S., and Jeong, C. S. 2016. The Effects of Treatment with Ethylene-Producing Tablets on the Quality and Storability of Banana (Musa sp.). Korean Journal of Horticultural Science & Technology, Volume 34(5): 746–754. https://doi.org/10.12972/kjhst.20160078

Bhadoria, P., Nagar, M., Bharihoke, V., and Bhadoria, A. S. 2018. Ethephon, An Organophosphorous, A Fruit and Vegetable Ripener: Has Potential Hepatotoxic Effects?. Journal of Family Medicine and Primary Care, Volume 7(1): 179–183. http://dx.doi.org/10.4103/jfmpc.jfmpc_422_16

Conesa, A., Brotons, J. M., Manera, F. J., and Porras, I. 2014. The Degreening of Lemon and Grapefruit in Ethylene Atmosphere: A Cost Analysis. Scientia Horticulturae, Volume 179: 140–145. https://doi.org/10.1016/j.scienta.2014.09.026

Gomes, J. F. S., Vieira, R. R., and Leta, F. R. 2013. Colorimetric indicator for Classification of Bananas During Ripening. Scientia Horticulturae, Volume 150: 201–205. https://doi.org/10.1016/j.scienta.2012.11.014

Hendry, G. A. F., and Grime, J. P. 1993. Methods in Comparative Plant Ecology: A Laboratory Manual 1 ed. Berlin: Springer Science+Business Media.

Hou, J. C., Hu, Y. H., Hou, L. X., Guo, K. Q., and Satake, T. 2015. Classification of Ripening Stages of Bananas Based On Support Vector Machine. International Journal of Agricultural and Biological Engineering, Volume 86: 99–103.

Jomori, M. L. L., Berno, N. D., and Kluge, R. A. 2016. Ethylene Application After Cold Storage Improves Skin Color of ‘Valencia’ Oranges. Revista Brasileira de Fruticultura, 384. https://doi.org/10.1590/0100-29452016636

Kesari, R., Trivedi, P. K., and Nath, P. 2007. Ethylene-Induced Ripening in Banana Evokes Expression of Defense and Stress-Related Genes in Fruit Tissue. Postharvest Biology and Technology, Volume 46(2): 136–143. https://doi.org/10.1016/j.postharvbio.2007.04.010

Komalasari, W. B. 2018. Statistik Konsumsi Pangan Tahun 2018. Jakarta. Pusat Data dan Sistem Informasi Pertanian.

Krishnaiah, K., and Shahabudeen, P. 2012. Applied Design of Experiments and Taguchi Methods. Delhi: PHI Learning Private Limited.

Lohani, S., Trivedi, P. K., and Nath, P. 2004. Changes in Activities of Cell Wall Hydrolases During Ethylene-Induced Ripening in Banana: Effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, Volume 31(2): 119–126. https://doi.org/10.1016/j.postharvbio.2003.08.001

Lustriane, C., Dwivany, F. M., Suendo, V., and Reza, M. 2018. Effect of Chitosan and Chitosan-nanoparticles on Post Harvest Quality of Banana Fruits. Journal of Plant Biotechnology, Volume 45: 36–44. https://doi.org/10.5010/JPB.2018.45.1.036

Mayuoni, L., Tietel, Z., Patil, B. S., and Porat, R. 2011. Does Ethylene Degreening Affect Internal Quality of Citrus Fruit?. Postharvest Biology and Technology, Volume 62(1): 50–58. https://doi.org/10.1016/j.postharvbio.2011.04.005

Morales, J., Tárrega, A., Salvador, A., Navarro, P., and Besada, C. 2020. Impact of Ethylene Degreening Treatment on Sensory Properties and Consumer Response to Citrus Fruits. Food Research International, Volume 127: 1-8. https://doi.org/10.1016/j.foodres.2019.108641

Opara, U. L., Al-Yahyai, R., Al-Waili, N., Said, F. Al, Al-Ani, M., Manickavasagan, A., and Al-Mahdouri, A. 2012. Effect of Storage Conditions on Physico-chemical Attributes and Physiological Responses of ‘Milk’ (Musa spp., AAB Group) Banana During Fruit Ripening. Int. J. Postharvest Technology and Innovation, Volume 2(4): 370–386. http://dx.doi.org/10.1504/IJPTI.2012.050983

Paull, R. E. 1996. Ethylene, Storage and Ripening Temperatures Affect Dwarf Brazilian Banana Finger Drop. Postharvest Biology and Technology, Volume 8(1): 65–74. https://doi.org/10.1016/0925-5214(95)00058-5

Per, H., Kurtoǧlu, S., Yaǧmur, F., Gümüş, H., Kumandaş, S., and Poyrazoǧlu, M. H. 2007. Calcium Carbide Poisoning via Food in Childhood. Journal of Emergency Medicine, Volume 32(2): 179–180. https://doi.org/10.1016/j.jemermed.2006.05.049

Pongprasert, N., Srilaong, V., and Sugaya, S. 2020. An Alternative Technique Using Ethylene Micro-Bubble Technology to Accelerate The Ripening of Banana Fruit. Scientia Horticulturae, Volume 272: 1-6. https://doi.org/10.1016/j.scienta.2020.109566

Puslitbang Hortikultura. 2005. Prospek dan Arah Pengembangan Agribisnis Pisang. Badan Penelitian dan Pengembangan Pertanian.

Sanaeifar, A., Bakhshipour, A., and De La Guardia, M. 2016. Prediction of Banana Quality Indices from Color Features Using Support Vector Regression. Talanta, Volume 148: 54–61. https://doi.org/10.1016/j.talanta.2015.10.073

Saraiva, L. A., Castelan, F. P., Gomes, B. L., Purgatto, E., and Cordenunsi-Lysenko, B. R. 2018. Thap Maeo Bananas: Fast Ripening and Full Ethylene Perception at Low Doses. Food Research International, Volume 105: 384–392. https://doi.org/10.1016/j.foodres.2017.11.007

Siddiq, M., Ahmed, J., and Lobo, M. G. 2020. Handbook of Banana Production, Postharvest Science, Processing Technology, and Nutrition. Hoboken: John Wiley & Sons Ltd.

Singh, R. K., Pandey, D., Patil, T., and Sawarkar, A. N. 2020. Pyrolysis of Banana Leaves Biomass: Physico-chemical Characterization, Thermal Decomposition Behavior, Kinetic and Thermodynamic Analyses. Bioresource Technology, 310(March), 123464. https://doi.org/10.1016/j.biortech.2020.123464

Singh, R., Rashmi, Bhingole, P., and Avikal, S. 2018. Grey Based Taguchi Optimization for Heat Treated Welded Joint. Materials Today. Proceedings, Volume 5(9): 19156–19165. https://doi.org/10.1016/j.matpr.2018.06.270

Soltani, M., Alimardani, R., and Omid, M. 2011. Changes in Physico-mechanical Properties of Banana Fruit During Ripening Treatment. Journal of American Science, Volume 7(5): 14–19.

Subdirektorat Statistik Hortikultura. 2019. Statistik Tanaman Buah-Buahan dan Sayuran Tahunan Indonesia 2018. Jakarta: Badan Pusat Statistik.

Sugiyono. 2005. Otomatisasi Sistem Pematangan Buatan Pada Buah-Buahan Klimakterik: Kasus Pisang Susu. Thesis. Bogor: Institut Pertanian Bogor.

Symmank, C., Zahn, S., and Rohm, H. 2018. Visually Suboptimal Bananas: How Ripeness Affects Consumer Expectation and Perception. Appetite, Volume 120: 472–481. https://doi.org/10.1016/j.appet.2017.10.002

Winarti. 2018. Statistik Hortikultura Daerah Istimewa Yogyakarta 2018. Yogyakarta: BPS Provinsi DI Yogyakarta.

Xie, C., Chu, B., and He, Y. 2018. Prediction of Banana Color and Firmness Using A Novel Wavelengths Selection Method of Hyperspectral Imaging. Food Chemistry, Volume 245: 132–140. https://doi.org/10.1016/j.foodchem.2017.10.079

Yahia, E. M., and Carrillo-Lopez, A. Ed. 2018. Postharvest Physiology and Biochemistry of Fruits and Vegetables. Sawston: Woodhead Publishing.

Yang, X., Song, J., Fillmore, S., Pang, X., and Zhang, Z. 2011. Effect of High Temperature on Color, Chlorophyll Fluorescence and Volatile Biosynthesis in Green-Ripe Banana Fruit. Postharvest Biology and Technology, Volume 62(3): 246–257. https://doi.org/10.1016/j.postharvbio.2011.06.011

DOI: https://doi.org/10.22146/aij.v8i1.73545

Article Metrics

Abstract views : 1089 | views : 1058


  • There are currently no refbacks.

Copyright (c) 2022 Ardhianata Triasmoko, Anggoro Cahyo Sukartiko, Nafis Khuriyati

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.