Prediction of Anti-SARS CoV-2 Activity from Green Tea Catechin (Camellia sinensis L. Kuntze) Compound Against To Receptors Non-structural Protein 3 (6W6Y) And Non-structural Protein 5 (6M2N)

https://doi.org/10.22146/mot.70124

Roihatul Mutiah(1*), Chamlah Ayatillah(2), Yen yen Ari Indrawijaya(3), Arief Suryadinata(4)

(1) Department of Pharmacy, Faculty of Medical and Health Science, Islamic State University Maulana Malik Ibrahim Malang, East Java
(2) Undergraduate Program of Pharmacy, Faculty of Medical and Health Science, Islamic State University Maulana Malik Ibrahim Malang, East Java
(3) Department of Pharmacy, Faculty of Medical and Health Science, Islamic State University Maulana Malik Ibrahim Malang, East Java
(4) Department of Pharmacy, Faculty of Medical and Health Science, Islamic State University Maulana Malik Ibrahim Malang, East Java
(*) Corresponding Author

Abstract


Green tea catechin compounds (Camellia sinensis L. Kuntze) have an antiviral activity such as influenza, hepatitis B, hepatitis C, herpes simplex virus, HIV, and proven in vitro antiviral influenza against NSP5 in SARS CoV. These considerations are used in this study using Non-structural Protein (NSP), namely NSP3 and NSP5 in SARS CoV-2, which have a role in viral replication and transcription. This study aims to predict the physicochemical properties according to the five rules of Lipinski's using swissADME. Prediction of toxicity with LD50 classification using the Protox II online tool. Catechin compound activity based on ligand interaction with NSP3 (PDB ID: 6W6Y) and NSP5 (PDB ID: 6M2N) receptors using Molegro Virtual Docker (MVD) 6.0. The results showed the predictions of physicochemical properties of the (-)-epigallocatechin (EGC), (-)-epicatechin-3-gallate (ECG), and (-)-epicatechin (EC) compounds fulfilled the five rules of Lipinski's. Catechin compounds have toxicity at levels 4 and 6. The activity of catechin compounds on NSP3 (PDB ID: 6W6Y) and NSP5 (PDB ID: 6M2N) receptors indicated that all catechin compounds had inhibitory activity. The best potential activity compound is (-)-epigallocatechin-3-gallate (EGCG) with a rerank score of -102.8200 and -134.1800 Kcal/mol so that EGCG can be recommended as a candidate for the SARS CoV-2 antiviral compound.


Keywords


Camellia sinensis; NSP3; NSP5; Toxicity; Anti-SARS CoV-2

Full Text:

PDF


References

Abdulfatai, U., Uzairu, A., Shallangwa, G.A., & Uba, S., 2020, ‘Molecular docking analysis of chloroquine and hydroxychloroquine and design of anti-SARS-COV2 protease inhibitor’, Mod. Appl. Sci., 14 (10), 52.

Alanagreh, L., Alzoughool, F., & Atoum, Manar., 2020, ‘The human coronavirus disease covid-19: its origin, characteristics, and insights into potential drugs and its mechanisms’, Pathogens, 9 (5), 331.

Astuti, I., & Ysrafil, 2020, ‘Severe acute respiratory syndrome coronavirus 2 (sars-cov-2): an overview of viral structure and host response’, Diabetes Metab. Syndr. Clin. Res. Rev., 14, 407–4012.

Canta, F., Marrone, R., Bonora, S., et al., 2005, ‘Pharmacokinetics and hepatotoxicity of lopinavir/ritonavir in non-cirrhotic hiv and hepatitis C virus (HCV) co-infected patients’, J. Antimicrob. Chemother., 55 (2), 280–281.

Chang, K.Y., & Yang, J.R., 2013, ‘Analysis and prediction of highly effective antiviral peptides based on random forests’, PLoS One, 8 (8).

Chen, Y., N, Sergey., Savinov., Mielech., et al., 2015, ‘X-Ray structural and functional studies of the three tandemly linked domains of non-structural protein 3 (NSP3) from murine hepatitis virus reveal conserved functions’, J. Biol. Chem., 290 (42), 25293–25306.

Cushnie, T.P., & Lamb, A.J., 2005, ‘Antimicrobial activity of flavonoids’, Int. J. Antimicrob. Agents, 26 (5), 343–356.

Dai, W., Ruan, C., Zhang, Y., Wang, J., et al., 2020, ‘Bioavailability enhancement of EGCG by structural modification and nano-delivery: a review’, J. Funct. Foods, 65, 1756-4646.

Das, P., Majumder, R., Mandal, M., & Basak, P., 2020, ‘In-silico approach for identification of effective and stable inhibitors for COVID-19 main protease (Mpro) from flavonoid based phytochemical constituents of Calendula officinalis’, J. Biomol. Struct. Dyn., 1–16.

Ekins, S., Mestres, J., & Testa, B., 2007, ‘In silico pharmacology for drug discovery: applications to targets and beyond’, Br. J. Pharmacol., 152 (1) , 21–37.

Garza-Lopez, R. ., Kozak, J., & Gray, H., 2020, ‘Copper(II) Inhibition of the SARS-CoV-2 Main Protease’, ChemRxiv Prepr. Serv. Chem.,. 2, 1–13.

Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S., 2020, ‘evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study’, J. Biomol. Struct. Dyn., 1 (1), 1–13.

Guo, Y.R., Cao, Q.D., Hong, Z.Si., Tan, Y.Y., et al., 2020, ‘The Origin, Transmission And Clinical Therapies On Coronavirus Disease 2019 (COVID-19) Outbreak – An Update On The Status’ Mil. Med. Res., 7 (11).

Han, Yu., & Yang, H., 2020, ‘The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): a chinese perspective’, J. Med. Virol., 92 (6), 639–644.

Hartini, Y., Saputra, B., Wahono, B., et al., 2021, ‘Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus’, Results Chem., 3, 100087.

Hevia, E.M., Paz-Lugo, P.D., & Anchez, G.S., 2021, ‘Glycine can prevent and fight virus invasiveness by reinforcing the extracellular matrix’, J. Funct. Foods, 76, 1756-4646.

Itoh, Y., Nakashima, Y., Shuichirotsukamoto., Kurohara, T., Suzuki, M.,et al., 2019, ‘N+-C-H···O hydrogen bonds in protein-ligand complexes’, Sci. Rep., 9 (1), 1–5.

Jahan, I., & Onay, A., 2020 ‘Potentials of plant-based substance to inhabit and probable cure for the covid-19’, Turkish J. Biol., 44 (1), 228–241.

Kumar, P., Bhardwaja, T., Kumara, A., Gehia, B.R., et al., 2020, ‘reprofiling of approved drugs against SARS-Cov-2 main protease: an in-silico study’, J. Biomol. Struct. Dyn., 1–15.

Lipinski, C.A., Lombardo, F., Dominy, B.W., & Feeney, P.J., 1997, ‘experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings’, Adv. Drug Deliv. Rev., 23, 3–25.

Littler, D.R., Maclachlan, B.J., Watson, G.M., Vivian, J.P., & Gully, B.S., 2020, ‘A pocket guide on how to structure SARS-CoV-2 drugs and therapies’, Biochem. Soc. Trans., 48 (6), 2625–2641.

Lokhandea, K.B., Doiphode, S., Vyas, R., & Swamya, K.V., 2020, ‘molecular docking and simulation studies on sars-cov-2 mpro reveals mitoxantrone, leucovorin, birinapant, and dynasore as potent drugs against COVID-19’, J. Biomol. Struct. Dyn., 1–12.

Meltzer, S.M., Monk, B.J., & Tewari, K.S, 2009, ‘green tea catechins for treatment of external genital warts’, Am. J. Obstet. Gynecol., 200 (3), 233.e1-233.

Muralidar, S., Ambi, S.V., Sekaran, S., & Krishnan, U.M., 2020, ‘the emergence of covid-19 as a global pandemic: understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2’, Biochimie, 179, 85–100.

Nguyen, T.T.H., Woo, H.J., Kang, H.K., et al., 2012, ‘Flavonoid-mediated inhibition of SARS coronavirus 3C-Like Protease expressed in pichia pastoris’, Biotechnol. Lett., 34 (5), 831–838.

Nu´nez, M., 2006, ‘Hepatotoxicity of antiretrovirals: incidence, mechanisms and management’, J. Hepatol., 44 (1), 132–139.

Pedro, A.C., Maciel, G.M., Rampazzo, R.V., & Haminiuk, C.W.I, 2020, ‘Fundamental and applied aspects of catechins from different sources: a review’, Int. J. Food Sci. Technol., 55 (2), 429–442.

Priyanto, 2009, ‘Toksikologi: Mekanisme, Terapi Antidotum Dan Penilaian Resiko’, Leskonfi, Depok.

Puspaningtyas, A.R., 2013, ‘Docking Molekul Dengan Metoda Molegro Virtual Docker Dari Ekstrak Air psidium guajava, Linn dan Citrus sinensis, Peels Sebagai Inhibitor Pada Tirosinase Untuk Pemutih Kulit’, J. Kim. Terap. Indones., 15 (1), 31–39.

Reygaert, W.C., 2018, ‘Review article green tea catechins: their use in treating and preventing infectious diseases’, Hindawi BioMed Res. Int., 9.

Salman, S., Shah, F.H., Idrees, J., Idrees, F., et al., 2020, ‘Virtual screening of immunomodulatory medicinal compounds as promising anti-SARS-Cov-2 inhibitors’, Future Virol., 15 (5), 267–275.

Soares, S., Brandão, E., Guerreiro, S., et al., 2020, ‘Tannins in food: Insights into the molecular perception of astringency and bitter taste’, Molecules, 25 (11), 1–26.

Song, J.M., Lee, K.H., & Seong, B.L, 2005, ‘Antiviral effect of catechins in green tea on influenza virus,’ Antiviral Res., 68 (2), 66–74.

Srivastava, V., Yadav, A., & Sarkar, P., ‘Molecular docking and ADMET study of bioactive compounds of Glycyrrhiza glabra against main protease of SARS-CoV2’, 2020, Mater. Today Proc. xxx xxx.

Thomsen, R., & Christensen, M.H., 2006, ‘MolDock: a new technique for high-accuracy molecular docking’, J. Med. Chem, 49 (11), 3315–3321.

Unhale,S.S., Ansar, Q.B., Sanap, S., Biyani, K.R., et al., 2020, ‘A Review On Corona Virus (Covid-19), World J. Pharm. Life Sci., 6 (4), 109–115.

Weigel, L.F., Nitsche, C., Graf, D., Bartenschlager, R., & Klein, C.D., 2015, ‘Phenylalanine and phenylglycine analogues as arginine mimetics in dengue protease inhibitors,” J. Med. Chem., 58 (19), 7719–7733.

World Health Organization (WHO), 2020, ‘Report Of The WHO On Coronavirus Disease 2019 (Covid-19).

Wu, C., Liub, Y., Yang, Y., Zhang, P., et al., 2020, ‘Analysis of therapeutic targets for sars-cov-2 and discovery of potential drugs by computational methods’, Acta Pharm. Sin. B, 10 (5), 766–788.

Xu, Jun., Xu, Zhao., & Zhen, W, 2017, “A review of the antiviral role of green tea catechins’, Molecules, 22 (8), 1–18.



DOI: https://doi.org/10.22146/mot.70124

Article Metrics

Abstract views : 1108 | views : 895

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Majalah Obat Tradisional

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

©Majalah Obat Tradisional (Traditional Medicine Journal)
 ISSN 2406-9086
Faculty of Pharmacy
Universitas Gadjah Mada