Date Log
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Effect of Wood Extractives on Calorific Value
Corresponding Author(s) : Deded Sarip Nawawi
Jurnal Ilmu Kehutanan,
Vol 16 No 1 (2022): Maret
Abstract
The calorific value is a parameter of palm biomass to determine its energy value. Extractives of wood is one of the factors that affect the calorific value. This study aimed to prove the positive effect of extractives on increasing calorific value by identifying the effect of adding extractives on low calorific value biomass. The study used three species wood energy, i.e., Calliandra calothyrsus, Gliricidia sepium, and Leucaena leucocephala. The soxhlet extraction was carried out to isolate extractives from sample. The calorific value sample and residue after extraction were analyzed to evaluate the changes of calorific value due to loss of extractives. The effect of extractives on the calorific value was confirmed by adding wood extractives to the palm biomass. The results showed that the extraction process reduced calorific value of residue ranging from 2.63 to 5.88%, and the bark it ranged from 5.52 to 6.70%. The addition of wood extractives to palm biomass increased the calorific value about 5.86-10.33%, while the addition of extractives from bark increase the calorific value by 6.45-9.05%. Based on the results of these studies prove that extractives have a positive effect on increasing the calorific value and can be used as an additive to increase...
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Adaganti SY, Yaliwal VS, Kulkarni BM, Desai GP, Banapurmath NR. 2014. Factors affecting bioethanol production from lignocellulosic biomass (Calliandra calothyrsus). Waste and Biomass Valorization 5:963–971.
- Ahmad NR. 2014. Konversi Biomassa untuk Energi Alternatif di Indonesia: Tinjauan Sumber Daya, Teknologi, Manajemen, dan Kebijakan. Page (Abimanyu H, Hendrana S, editors). LIPI Press, Jakarta.
- Al-Mefarrej HA, Abdel-Aal M, Nasser RA, Shetta ND. 2011. Impact of initial tree spacing and stem height levels on chemical composition of Leucaena leucocephala trees grown in Riyadh region. World Applied Sciences Journal 12:912–918.
- Álvarez-Álvarez P, Pizarro C, Barrio-Anta M, Cámara-Obregón A, María Bueno JL, Álvarez A, Gutiérrez I, Burslem DFRP. 2018. Evaluation of tree species for biomass energy production in Northwest Spain. Forests 9:1–15.
- Arisandi R, Ashitani T, Takahashi K, Marsoem SN, Lukmandaru G. 2020. Lipophilic extractives of the wood and bark from Eucalyptus pellita F. Muell grown in Merauke, Indonesia. Journal of Wood Chemistry and Technology 40:146–154. Taylor & Francis. Available from https://doi.org/10.1080/02773813.2019.1697295.
- ASTM. 2013a. ASTM D-1102. Test Method for Ash In Wood. ASTM, West Conshohocken (USA).
- ASTM. 2013b. ASTM D-3175. Test Method for Fixed Carbon In Wood. ASTM, West Conshohocken (USA).
- ASTM. 2019a. ASTM E-872. Standard Test Method for Moisture Analysis of Particulate Wood Fuels. ASTM, West Conshohocken (USA).
- ASTM. 2019b. ASTM E-872. Test Method for Volatile Metter in the Analysis of Particular Wood Fuels. ASTM, West Conshohocken (USA).
- Atapattu AAAJ, Pushpakumara DKNG, Rupasinghe WMD, Senarathne SHS, Raveendra SAST. 2017. Potential of Gliricidia sepium as a fuelwood species for sustainable energy generation in Sri Lanka . Agricultural Research Journal 54:34.
- Bajpai P. 2018. Forest Biorefinery. Pages 603–617 Biermann’s Handbook of Pulp and Paper: Raw Material and Pulp Making. Elsevier, Amsterdam.
- Bakhashwain A, El-Feel A, Hindi S, Bakhashwain A, Hindi S, Bakhashwain A, Hindi S, Bakhashwain A, Hindi S, Bakhashwain A. 2010. Physico-chemical characterization of some Saudi lignocellulosic natural resources and their suitability for fiber Production. Journal of King Abdulaziz University-Meteorology, Environment and Arid Land Agriculture Sciences 21:45–55.
- Braza CEM, Crnkovic PM. 2014. Physical - chemical characterization of biomass samples for application in pyrolysis process. Chemical Engineering Transactions 37:523–528.
- Chen MH, Huang TC. 2016. Volatile and nonvolatile constituents and antioxidant capacity of oleoresins in three Taiwan citrus varieties as determined by supercritical fluid extraction. Molecules 21:1–12.
- Demirbas A. 2002. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Exploration and Exploitation 20:105–111.
- Díaz MJ, García MM, Eugenio ME, Tapias R, Fernández M, López F. 2007. Variations in fiber length and some pulp chemical properties of Leucaena varieties. Industrial Crops and Products 26:142–150.
- Domingos I, Ayata U, Ferreira J, Cruz-Lopes L, Sen A, Sahin S, Esteves B. 2020. Calorific power improvement of wood by heat treatment and its relation to chemical composition. Energies 13:1–10.
- Effendi R, Roffandi N, Puspitodjati T, Bangsawan I. 2018. Menggagas energi biomassa hutan sebagai sumber energi terbarukan. Penelitian dan Pengembangan Sosial, Ekonomi, Kebijakan Dan Perubahan Iklim 11:1–5.
- Erol M, Haykiri-Acma H, Küçükbayrak S. 2010. Calorific value estimation of biomass from their proximate analyses data. Renewable Energy 35:170–173.
- Fatriani F, Sunardi S, Arfianti A. 2018. Kadar air, kerapatan, dan kadar abu wood pellet serbuk gergaji kayu galam (Melaleuca cajuputi Roxb) dan kayu akasia (Acacia mangium Wild). EnviroScienteae 14:77.
- Gbolade A, Adedokun O, Bello A, Bello Z. 2019. Cytotoxic and growth inhibitory activities of Gliricidia sepium (Jacq.) kunth ex walp. (fabaceae) and Hymenocardia acida Tul. (Phyllanthaceae) stem bark. Nigerian Journal of Pharmaceutical Sciences 18:1–10.
- Golander E. 2011. Characterization and methods for extraction of extractives in spent sulphite liquor. Chalmers University of Technology.
- Hanif A, Widyasanti A, Putri SH. 2020. Pengaruh lama ekstraksi terhadap rendemen oleoresin kulit mangga kuweni (Mangifera Odorata Griff) menggunakan metode MAE. Agroindustrial Technology Journal 4:95–107.
- Hawrot-Paw M, Koniuszy A, Mikiciuk M, Izwikow M, Stawicki T, Sędłak P. 2017. Analysis of ecotoxic influence of waste from the biomass gasification process. Environmental Science and Pollution Research 24:15022–15030.
- Hendrati RL, Nurrohmah SH. 2018. Quality of genetically-improved Acacia auriculiformis for renewable short-rotation wood-energy. Jurnal Manajemen Hutan Tropika 24:136–143.
- Kurt G, Haykırı H, Yaman S. 2018. Effect of functional group distribution on combustion characteristics of chars from Afsin Elbistan lignite and RDF 02:320–324.
- Lucas EB, Chow P. 1988. Fuel characteristics of selected four-year-old trees in Nigeria. Wood and Fiber Science 20:431–437.
- Lukmandaru G. 2009. Pengukuran kadar ekstraktif dan sifat warna pada kayu teras jati doreng (Tectona grandis). Jurnal Ilmu Kehutanan 3:67–73.
- Martínez-Pérez R, Pedraza-Bucio FE, Orihuela-Equihua R, López-Albarrán P, Rutiaga-Quiñones JG. 2015. Calorific value and inorganic material of ten Mexican wood species. Wood Research 60:281–292.
- Melzer M. 2013. Energetic valorisation of agricultural by‐products in the sub‐ Saharan zone: Biomass pre‐conditioning via flash pyrolysis. University of Technology of Compiègne.
- Messi LM, Noté OP, Mbing JN, Lavedan P, Vedrenne M, Ouedraogo N, Carraz M, Bourgeade-Delmas S, Pegnyemb DE, Haddad M. 2020. Triterpenoid saponins from Calliandra calothyrsus Meisn. and their antiproliferative activity against two digestive carcinoma human cell lines. Fitoterapia 146:1–24. Elsevier B.V. Available from https://doi.org/10.1016/j.fitote.2020.104669.
- Moya R, Tenorio C. 2013. Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass and Bioenergy 56:14–21.
- Nasser RA, Al-mefarrej HA. 2009. Non-carcinogenic solvents as alternative to benzene for wood extractives determination. Alexandria Science Exchange Journal: An International Quarterly Journal of Science Agricultural Environments 30:397–405.
- Ngangyo-Heya M, Foroughbahchk-Pournavab R, Carrillo-Parra A, Rutiaga-Quiñones JG, Zelinski V, Pintor-Ibarra LF. 2016. Calorific value and chemical composition of five semi-arid Mexican tree species. Forests 7:1–12.
- Nosek R, Holubcik M, Jandacka J. 2016. The impact of bark content of wood biomass on biofuel properties. BioResources 11:44–53.
- Oktaviananda C, Rahmawati RF, Prasetya A, Purnomo CW, Yuliansyah AT, Cahyono RB. 2017. Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass. Pages 1–7 AIP Conference Proceedings.
- Oyelere AT, Oluwadare AO. 2019. Studies on physical, thermal and chemical properties of wood Gliricidia sepium for potential bioenergy production. International Journal of Biomass and Renewables 8:28–38.
- ÖzyuǧUran A, Yaman S. 2017. Prediction of calorific value of biomass from proximate analysis. Energy Procedia 107:130–136.
- Pari G, Lestari FB. 1990. Analisis kimia beberapa jenis kayu Indonesia. Jurnal Penelitian Hasil Hutan 7:96–100.
- Pecha MB, Garcia-Perez M. 2020. Pyrolysis of lignocellulosic biomass: oil, char, and gas. Page BioenergySecond Edi. Elsevier. Available from http://dx.doi.org/10.1016/B978-0-12-815497-7.00029-4.
- Qiu H, Liu R, Long L. 2019. Analysis of chemical composition of extractives by acetone and the chromatic aberration of teak (Tectona grandis L.F.) from China. Molecules 24:1–11.
- Rahayu S, Hilyana S, Suryani E, Sari NH, Ali M. 2020. Analysis of wood pellet quality from Calliandra callothyrsus, Gliricida sepium, and sawdust as new and renewable energy. Pages 110–115 Proceeding International Conference on Science and Technology (ICST).
- Rajvanshi AK, Goswami DY. 1986. Biomass gasification. Pages 83–102 Alternative energy in agricultureVol. II. CRC Press, India Phalton.
- Reddy LJ, Jose B. 2010. Evaluation of Antibacterial activity of the bark, flower and leaf extracts of Gliricidia sepium from South India. International Journal of Current Pharmaceutical Research 2:18–20.
- Rhén C. 2004. Chemical composition and gross calorific value of the above-ground biomass components of young Picea abies. Scandinavian Journal of Forest Research 19:72–81.
- Rocha MFV, Vital BR, Carneiro ACO, Carvalho AMML, Cardoso MT, Hein PRG. 2016. Effects of plant spacing on the physical, chemical and energy properties of eucalyptus wood and bark. Journal of Tropical Forest Science 28:243–248.
- Rossi T, Moura LF De, Torquato PR, Brito JO. 2013. Effect of extractive removal on the calorific value of Brazilian woods residues. J. Chem. Chem. Eng. 7:340–343.
- Routa J, Anttila P, Asikainen A. 2017. Wood extractives of finnish pine, spruce and birch – availability and optimal sources of compounds: A literature review. Natural Resorces Institute Finland 73:1–55. Available from http://urn.fi/URN:ISBN:978-952-326-495-3.
- Ruiz-Aquino F, Ruiz-Ángel S, Feria-Reyes R, Santiago-García W, Suárez-Mota ME, Rutiaga-Quiñones JG. 2019. Wood chemical composition of five tree species from Oaxaca, Mexico. BioResources 14:9826–9839.
- Seethalashmi A. 2016. Gliricidia sepium bioenergy resource for power generation. Research Journal of Chemical and Environmental Sciences 4:32–37.
- Setyawati I, Wijayanti N, Wiratmini NI. 2019. Phytochemical content, extract standardization and antioxidant activity of Calliandra calothyrsus Meissn leaf, a potential phytoestrogen source. Pages 1–8 IOP Conference Series: Earth and Environmental Science.
- Sidabutar VTP. 2018. Kajian peningkatan potensi ekspor pelet kayu Indonesia sebagai sumber energi biomassa yang terbarukan. Jurnal Ilmu Kehutanan 12:99–116.
- Sladkova A, Haz A, Dubinyova L, Jablonsky M. 2015. Extractives from wood bark - source of chemicals and biofuels. Pages 50–51 European Workshop on Advanced Biofuels, Biorefinery and Bio-economy: A Challange for Central and East European Countries, Book of Abstract. Bratislava: Slovakia.
- So CL, Eberhardt TL. 2013. A mid-IR multivariate analysis study on the gross calorific value in longleaf pine: Impact on correlations with lignin and extractive contents. Wood Science and Technology 47:993–1003.
- Szymajda A, Łaska G. 2019. The effect of moisture and ash on the calorific value of cow dung biomass. Proceedings 16:1–4.
- TAPPI. 2007. TAPPI T 204. Solvent extractives of wood and pulp. Pages 7–10 Tappi Test Methods.
- Tullus A et al. 2014. Increasing air humidity - A climate trend predicted for northern latitudes - Alters the chemical composition of stemwood in silver birch and hybrid aspen. Silva Fennica 48:1–16.
- Tumuluru JS, Hess JR, Boardman RD, Wright CT, Westover TL. 2012. Formulation, pretreatment, and densification options to improve biomass specifications for co-firing high percentages with coal. Industrial Biotechnology 8:113–132.
- Usmana, Rianda, Novia. 2012. Pengaruh volume enzim dan waktu fermentasi terhadap Kadar etanol (bahan baku tandan kosong kelapa sawit dengan pretretment alkali. Jurnal Saintia Kimia 18:17–25.
- White R. 1987. Effect of lignin content and extractives on the higher heating value of wood. Wood and Fiber Science 19:446–452.
- Zanuncio AJV, Carvalho AG, Trugilho PF, Monteiro TC. 2014. Extractives and energetic properties of wood and charcoal. Revista Árvore 38:369–374.
- Zayed MZ, Wu A, Sallam S. 2019. Comparative phytochemical constituents of Leucaena leucocephala (Lam.) leaves, fruits, stem barks, and wood branches grown in Egypt using GC-MS method coupled with multivariate statistical approaches. BioResources 14:996–1013.