Date Log

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Empirical Data-Based Carbon Stock Projection in Agroforestry for Climate Change Mitigation
Corresponding Author(s) : Muharam Kemal Adam
Jurnal Ilmu Kehutanan,
Vol 19 No 2 (2025): September
Abstract
Deforestation from monoculture farming significantly contributes to greenhouse gas emissions and ecosystem degradation, highlighting the need for sustainable land management. Agroforestry presents a viable solution for enhancing carbon sequestration. However, many project models rely on assumptions or secondary data, leading to limited accuracy. This research aimed to enhance projections of carbon stock changes by utilizing empirical data from a 12.7-ha tea plantation in West Java, Indonesia. This research established baseline carbon stocks through direct field measurements in a monoculture scenario. Agroforestry interventions involved hardwood species, such as Toona sureni, Altingia excelsa, and Manglietia glauca, in conjunction with coffee crops. Carbon stock accumulation was then projected over ten years using allometric equations and annual growth increments derived from field observations. Results indicated that agroforestry increased carbon sequestration by threefold compared to monoculture, reaching 472.77 t CO2eq/ha by 2032. The findings demonstrated that empirical data-driven modeling resulted in more realistic and reliable projections, enhanced the accuracy of carbon stock predictions, and established agroforestry as a sustainable approach for mitigating climate change.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Arifin J, Hairiah K, Berlian, Prayogo C, Noordwijk M van. 2001. Carbon stock assessment for a forest-to-coffee conservasion landscape in Malang (East Java) and Sumber-Jaya (Lampung, Indonesia).
- Cardinael R, Cadisch G, Dupraz C, Lojka B, Oelbermann M. 2025. Guidelines for improved quantification and reporting of carbon stocks and additional carbon storage in agroforestry systems. Agroforestry Systems 99:82. Available from https://link.springer.com/10.1007/s10457-025-01184-x.
- Cardinael R, Guenet B, Chevallier T, Dupraz C, Cozzi T, Chenu C. 2018. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches. Biogeosciences 15:297–317. Available from https://bg.copernicus.org/articles/15/297/2018/.
- Chave J et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. Available from http://link.springer.com/10.1007/s00442-005-0100-x.
- Edwin M. 2016. Penilaian stok karbon tanah organik pada beberapa tipe penggunaan lahan di Kutai Timur, Kalimantan Timur. AGRIFOR 15:279. Available from http://ejurnal.untag-smd.ac.id/index.php/AG/article/view/2083.
- Getnet D, Mekonnen Z, Anjulo A. 2023. The potential of traditional agroforestry practices as nature-based carbon sinks in Ethiopia. Nature-Based Solutions 4:100079. Available from https://linkinghub.elsevier.com/retrieve/pii/S2772411523000319.
- Hairiah K, Ekadinata A, Sari RR, Rahayu S. 2011. Pengukuran cadangan karbon: Dari tingkat lahan ke bentang lahan. 2nd edition. World Agroforestry Centre (ICRAF), Bogor.
- Insarullah, Irwansyah, Wahid AMY, Saleng A, Yunus A. 2019. Law enforcement of environmental permit in mining management. IOP Conference Series: Earth and Environmental Science 343:012070. Available from https://iopscience.iop.org/article/10.1088/1755-1315/343/1/012070.
- Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems 76:1–10. Available from http://link.springer.com/10.1007/s10457-009-9229-7.
- Kabisch N, Korn H, Stadler J, Bonn A. 2017. Nature-based solutions to climate change adaptation in urban areas—linkages between science, policy and practice. Pages 1–11. Available from http://link.springer.com/10.1007/978-3-319-56091-5_1.
- Kalita RM, Das AK, Nath AJ. 2015. Allometric equations for estimating above and belowground biomass in tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass and Bioenergy 83:42–49. Available from https://linkinghub.elsevier.com/retrieve/pii/S0961953415300878.
- Kalita RM, Das AK, Sileshi GW, Nath AJ. 2020. Ecosystem carbon stocks in different aged tea agroforestry systems: Implications for regional ecosystem management. Tropical Ecology 61:203–214. Available from https://link.springer.com/10.1007/s42965-020-00084-8.
- Karuniasa M, Prambudi PA. 2019. Transition of primary forest to secondary forest and impact for water resources conservation. Journal of Environmental Science and Sustainable Development 2. Available from https://scholarhub.ui.ac.id/jessd/vol2/iss1/3/.
- Ketterings QM, Coe R, van Noordwijk M, Ambagau’ Y, Palm CA. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146:199–209. Available from https://linkinghub.elsevier.com/retrieve/pii/S0378112700004606.
- Krisnawati H, Adinugroho WC, Imanuddin R. 2012. Mohograph: Allometric models for estimating tree biomass at various forest ecosystem types in Indonesia. Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency, Bogor.
- Latifah S, Muhdi M, Purwoko A, Tanjung E. 2018. Estimation of aboveground tree biomass Toona sureni and Coffea arabica in agroforestry system of Simalungun, North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity 19:620–625. Available from https://smujo.id/biodiv/article/view/3028.
- Lestari KW, Dewi N. 2023. Potensi simpanan karbon pada beberapa tipe agroforestri berbasis kopi robusta di Desa Rowosari, Jember. Journal of Tropical Silviculture 14:150–157. Available from https://journal.ipb.ac.id/index.php/jsilvik/article/view/50338.
- Luth F, Setiyono H. 2018. The ability of coffee agroforestry system to store carbon stock. Journal of Forestry And Environment 1:6–10. Available from https://journal.uniku.ac.id/index.php/forestry-and-environment/article/view/1671.
- Marques A, Haneda NF, Hartoyo APP. 2022. Incidence attacks of coffee (Coffee arabica L.) pest on agroforestry system in Liquica Regency, Timor Leste. IOP Conference Series: Earth and Environmental Science 959:012010. Available from https://iopscience.iop.org/article/10.1088/1755-1315/959/1/012010.
- Miller GT, Spoolman SE. 2016. Environmental science, Fifteenth Edition. Cengage Learning, Boston.
- Mohotti AJ, Pushpakumara G, Singh VP. 2020. Shade in tea plantations: A new dimension with an agroforestry approach for a climate-smart agricultural landscape system. Pages 67–87 Agricultural Research for Sustainable Food Systems in Sri Lanka. Springer Singapore, Singapore. Available from http://link.springer.com/10.1007/978-981-15-3673-1_4.
- Murniati M, Suharti S, Yeny I, Minarningsih M. 2022. Cacao-based agroforestry in conservation forest area: Farmer participation, main commodities and its contribution to the local production and economy. Forest and Society 6:243–274. Available from https://journal.unhas.ac.id/index.php/fs/article/view/13991.
- Pan Y, Bao J, Ji Y, Li W, Lin W, Fan S, Mao L. 2025. Study on the incremental carbon sink of tea plantations under spatio-temporal variation characteristics. Frontiers in Environmental Science 13. Available from https://www.frontiersin.org/articles/10.3389/fenvs.2025.1561698/full.
- Pratama AR, Yuwono SB, Hilmanto R. 2015. Pengelolaan hutan rakyat oleh kelompok pemilik hutan rakyat di Desa Bandar dalam Kecamatan Sidomulyo Kabupaten Lampung Selatan. Jurnal Sylva Lestari 3:99–112. Available from http://jurnal.fp.unila.ac.id/index.php/JHT/article/view/787.
- Siagian K, Karuniasa M, Mizuno K. 2024. The estimation of economic valuation on carbon sequestration of agroforestry land system. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management) 14:231. Available from https://journal.ipb.ac.id/index.php/jpsl/article/view/48720.
- Siarudin M, Rahman SA, Artati Y, Indrajaya Y, Narulita S, Ardha MJ, Larjavaara M. 2021. Carbon sequestration potential of agroforestry systems in degraded landscapes in West Java, Indonesia. Forests 12:714. Available from https://www.mdpi.com/1999-4907/12/6/714.
- Sudiana E, Hanani N, Yanuwiadi B, Soemarno. 2009. Pengelolaan hutan rakyat berkelanjutan di Kabupaten Ciamis. Agritek 17.
- Takimoto A, Nair PKR, Nair VD. 2008. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agriculture, Ecosystems & Environment 125:159–166. Available from https://linkinghub.elsevier.com/retrieve/pii/S0167880907002939.
- Tiemann A, Ring I. 2022. Towards ecosystem service assessment: Developing biophysical indicators for forest ecosystem services. Ecological Indicators 137:108704. Available from https://linkinghub.elsevier.com/retrieve/pii/S1470160X22001753.
- Vanneste T, Pardon P, Coussement T, Baens E, Elsen A, Carton S, Reubens B, Verheyen K. 2024, July 25. CARAT: An innovative tool for quantifying carbon sequestration in agroforestry systems. Available from https://www.researchsquare.com/article/rs-4678635/v1.