Date Log

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Determination of Harvesting Cycle of Gliricidia sepium for Bioenergy Using Growth Model
Corresponding Author(s) : Dimas Wahyu Diono
Jurnal Ilmu Kehutanan,
Vol 19 No 1 (2025): March
Abstract
The emission of CO2 is increasing due to the high population and standard of living, particularly from the energy sector. Renewable energy from forest resources, such as fuelwood, can contribute to these emissions' reduction. Therefore, this research aimed to generate a growth model to determine the harvesting cycle of Gliricidia sepium as a source of raw material for bioenergy. The model generation employed regression technique and used stand inventory data. The growth model for Gliricidia sepium was Y = 157.46e (-3.342/A), where age (A) was the independent variable. The optimum harvest occurred at 4 years with a biomass production potential of 68.28 tons/ha. This research provided valuable information for decision-making in managing the industrial forest plantation of Gliricidia sepium for bioenergy.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Barbosa LO, dos Santos JA, Gonçalves AFA, Campoe OC, Scolforo JRS, Scolforo HF. 2023. Competition in forest plantations: Empirical and process-based modelling in pine and eucalypt plantations. Ecological Modelling 483:110410.
- Bian S, Xie Y, Zhang F. 2023. Re-imagining the future of forest management -- An age-dependent approach towards harvesting.
- Bruce D, Schumacher FX. 1950. Forest Mensuration, 3rd edition. McGraw-Hill, Michigan.
- Elevitch CR, Francis JK. 2006. Gliricidia sepium (Gliricidia). Pages 1–18 Species Profiles For Pacific Island Agroforestry: Ecological, Economic, and Cultural Renewal. Agroforestry Net, Inc., Hawaii.
- Fabbio G. 2016. Coppice forests, or the changeable aspect of things, a review. Annals of Silvicultural Research 40:108–132.
- Febijanto I. 2020. Perencanaan PLTU biomassa berbahan bakar tanaman kaliandra merah di Kalimantan Timur. Jurnal Energi dan Lingkungan (Enerlink) 14. Available from https://ejurnal.bppt.go.id/index.php/Enerlink/ article/view/4271.
- Food and Agriculture Organization. 2023. Forestry production and trade. Available from https://www.fao. org/faostat/en/#data/FO/.
- Gravetter FJ, Wallnau LB. 2016. Statistics for the behavioral sciences. Cengage Learning. Available from https://books.google.co.id/books?id=K7saCgAAQBAJ.
- Junior ZAA, Mujiono D. 2023. Analisa teknik dan keekonomian pengolahan biomassa sawdust dari hutan tanaman energi (HTE) untuk mendukung program co firing di PLTU Pelabuhan Ratu. CIVED 10.
- Mardiatmoko G. 2020. Pentingnya uji asumsi klasik pada analisis regresi linier berganda (Studi kasus penyusunan persamaan allometrik kenari muda (Canarium indicum)). BAREKENG 14:333–342. Available from https://ojs3.unpatti.ac.id/index.php/ barekeng/article/view/1872.
- Mulyana B, Soeprijadi D, Purwanto RH. 2020a. Development of bioenergy plantation in Indonesia: Yield regulation and above-ground carbon storage in Gliricidia (Gliricidia sepium) plantation. E3S Web of Conferences 202:08009.
- Mulyana B, Soeprijadi D, Purwanto R. 2020b. Allometric model of wood biomass and carbon for Gliricidia (Gliricidia sepium (Jacq) Kunth Ex Walp.) at bioenergy plantation in Indonesia. Forest Ideas 26:153–164.
- Nicolescu V-N et al. 2017. Silvicultural guidelines for European coppice forests. Albert Ludwig University of Freiburg, Freiburg, Germany.
- Oyelere AT, Oluwadare AO. 2019. Studies on physical, thermal and chemical properties of wood Gliricidia sepium for potential bioenergy production. International Journal of Biomass and Renewables 8:28.
- Prodan M. 1968. Forest biometrics. Pergamon Press, Oxford, England. Available from https://books.google.co.id/ books?id=xSwcMwEACAAJ.
- Salas-Eljatib C, Mehtätalo L, Gregoire TG, Soto DP, Vargas Gaete R. 2021. Growth equations in forest research: Mathematical basis and model similarities. Current Forestry Reports 7:230–244.
- Sasaki N. 2021. Timber production and carbon emission reductions through improved forest management and substitution of fossil fuels with wood biomass. Resources, Conservation and Recycling 173:105737.
- Siarudin M, Indrajaya Y. 2017. Dinamika cadangan karbon sistem agroforestri Gmelina (Gmelina arborea Roxb.) pada hutan rakyat di Tasikmalaya dan Banjar, Jawa Barat. Jurnal Wasian 4:37.
- Suhartati T, Pebriansyah. 2021. Daur volume optimal jati di hutan rakyat (Studi kasus di Desa Girikarto, Kecamatan Panggang, Kabupaten Gunung kidul). Jurnal Wana Tropika 11:16–25.
- Udali A, Chung W, Talbot B, Grigolato S. 2024. Managing harvesting residues: A systematic review of management treatments around the world. Forestry: An International Journal of Forest ResearchDOI: 10.1093/forestry/cpae041.
- Unrau A, Becker G, Spinelli R, Lazdina D, Magagnotti N, Nicolescu V-N, Buckley P, Bartlett D, Kofman PD, editors. 2018. Coppice forests in Europe. Albert Ludwig University of Freiburg, Freiburg i. Br., Germany.
- van Ruijven BJ, De Cian E, Sue Wing I. 2019. Amplification of future energy demand growth due to climate change. Nature Communications 10:2762. Available from https://doi.org/10.1038/s41467-019-10399-3.
- Vanclay JK. 1994. Modelling forest growth and yield: Applications to mixed tropical forests. CAB International, Wallingford, UK.