Optimization and Characterization of Extruded Partially Pregelatinized Cassava Starch as Filler-Binder

  • T N Saifullah Sulaiman Farmasi UGM
  • Gabriela Kasih Mawarni
  • Rumiyati Rumiyati
Keywords: cassava starch, twin screw extrusion, partially pregelatinized, filler-binder, response surface methodology

Abstract

In order to use starch as a filler-binder, the pregelatinization method by extrusion can enhance the flow characteristics and compressibility of starch. This study aimed to find the optimum process parameter for producing partially pregelatinized cassava starch (PPCS) using twin screw extrusion and characterizing it as a filler-binder excipient. For arranging experimental trials, a three-level Box-Behnken design with three independent variables—starch moisture content (ranged from 20% to 40%), extrusion temperature (ranged from 50°C to 70°C), and screw speed (ranged from 10 rpm to 30 rpm)—was used to make PPCS. The response surface methodology approach was used for optimization. The desired filler-binder characteristic of PPCS was defined as having good flowability and compactibility properties. The most desirable process parameter was achieved by combining 39.9 percent starch moisture content, 70°C extrusion temperature, and 25.8 rpm screw speed. The results showed that optimized PPCS has good flow properties and also good water absorption capacity. The optimized PPCS had a polygonal shape and a size range of 149-400μm. PPCS showed birefringence characteristics under polarized light, indicating a large number of undamaged starch granules. The PPCS XRD pattern showed peaks at 15°, 17°, 18°, and 23°, and also a relative crystallinity of 27.3 percent. When analyzed with DSC, PPCS revealed glass transition curves and a gelatinization degree of 36.01 percent.

References

Ali, S., Singh, B., & Sharma, S. (2020). Effect of processing temperature on morphology, crystallinity, functional properties, and in vitro digestibility of extruded corn and potato starches. Journal of Food Processing and Preservation, 44(7), e14531. https://doi.org/10.1111/jfpp.14531
Anderson, R. A., Conway, H. F., & Peplinski, A. J. (1970). Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. Starch - Stärke, 22(4), 130–135. https://doi.org/10.1002/star.19700220408
Atkin, N. J., Abeysekera, R. M., & Robards, A. W. (1998). The events leading to the formation of ghost remnants from the starch granule surface and the contribution of the granule surface to the gelatinization endotherm. Carbohydrate Polymers, 36(2), 193–204. https://doi.org/10.1016/S0144-8617(98)00002-2
Beakawi Al-Hashemi, H. M., & Baghabra Al-Amoudi, O. S. (2018). A review on the angle of repose of granular materials. Powder Technology, 330, 397–417. https://doi.org/10.1016/j.powtec.2018.02.003
BeMiller, J. N., & Whistler, R. L. (Eds.). (2009). Starch: Chemistry and Technology (3rd edition). Academic Press.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019
Cheng, H., Wang, H., Ma, S., Xue, M., Li, J., & Yang, J. (2022). Development of a water solubility model of extruded feeds by utilizing a starch gelatinization model. International Journal of Food Properties, 25(1), 463–476. https://doi.org/10.1080/10942912.2022.2046055
Council of Europe, European Pharmacopoeia Commission, & European Directorate for the Quality of Medicines & Healthcare. (2010). European pharmacopoeia. Council Of Europe : European Directorate for the Quality of Medicines and Healthcare.
Divya, S., & Ganesh, G. N. K. (2019). Characterization of Powder Flowability Using FT4–Powder Rheometer. Journal of Pharmaceutical Sciences and Research, 11(1), 25–29.
Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers, 12(3), 641. https://doi.org/10.3390/polym12030641
European Pharmacopoeia. (2010). Powder Flow <2.9.36>. In European Pharmacopoeia (6th ed.). Directorate for the Quality of Medicines of the Council of Europe.
Fudholi, A., & Bestari, A. N. (2019). Formulasi & Teknologi Sediaan Tablet. Istana Agency.
Fudholi, A., Marchaban, Sulaiman, T. N. S., Kuswahyuning, R., Martien, R., Bestari, A. N., Sa’adah, M., Khadijah, & Aziza, F. N. (2021). Seri Buku Petunjuk Praktikum Teknologi Farmasi Formulasi dan Teknologi Sediaan Padat. Fakultas Farmasi UGM.
Getachew, A., Yilma, Z., & Abrha, S. (2020). Acetylation and Evaluation of Taro Boloso-I Starch as Directly Compressible Excipient in Tablet Formulation. Advances in Pharmacological and Pharmaceutical Sciences, 2020, 2708063. https://doi.org/10.1155/2020/2708063
Ghebre-Sellassie, I., Ghebre-Selassie, I., Martin, C. E., Zhang, F., DiNunzio, J., & Martin, C. (Eds.). (2003). Pharmaceutical Extrusion Technology. CRC Press. https://doi.org/10.1201/9780203911532
Iqubal, M. K., Singh, P. K., Shuaib, M., Iqubal, A., & Singh, M. (2014). Recent advances in direct compression technique for pharmaceutical tablet formulation. International Journal of Pharmaceutical Research and Development, 6(1), 049–057.
Jiang, H., Jane, J.-L., Acevedo, D., Green, A., Shinn, G., Schrenker, D., Srichuwong, S., Campbell, M., & Wu, Y. (2010). Variations in starch physicochemical properties from a generation-means analysis study using amylomaize V and VII parents. Journal of Agricultural and Food Chemistry, 58(9), 5633–5639. https://doi.org/10.1021/jf904531d
Jivraj, M., Martini, L. G., & Thomson, C. M. (2000). An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science & Technology Today, 3(2), 58–63. https://doi.org/10.1016/s1461-5347(99)00237-0
Kaleem, M. A., Alam, M. Z., Khan, M., Jaffery, S. H. I., & Rashid, B. (2021). An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes. Metal Powder Report, 76, S50–S54. https://doi.org/10.1016/j.mprp.2020.06.061
Karisma Sari, K. L., Anton Prasetia, I. G. N. J., & Sri Arisanti, Cok. I. (2012). Pengaruh Rasio Amilum:Air dan Suhu Pemanasan terhadap Sifat Fisik Amilum Singkong Pregelatin yang Ditujukan sebagai Eksipien Tablet. Jurnal Farmasi Udayana, 1(1), 50–67.
Leonel, M., Freitas, T. S. de, & Mischan, M. M. (2009). Physical characteristics of extruded cassava starch. Scientia Agricola, 66, 486–493. https://doi.org/10.1590/S0103-90162009000400009
Lund, D., & Lorenz, K. J. (1984). Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. C R C Critical Reviews in Food Science and Nutrition, 20(4), 249–273. https://doi.org/10.1080/10408398409527391
Mishra, A., Kumar, S., & Kumar, S. (2008). Application of Box-Benhken experimental design for optimization of laccase production by Coriolus versicolor MTCC138 in solid-state fermentation. Journal of Scientific and Industrial Research, 67.
Odeku, O. A., & Picker-Freyer, K. M. (2009). Characterization of acid modified Dioscorea starches as direct compression excipient. Pharmaceutical Development and Technology, 14(3), 259–270. https://doi.org/10.1080/10837450802572367
Putra, M. W. (2011). Amprotab® Pregelatin sebagai Bahan Pengisi Pengikat dalam Pembuatan Tablet dengan Metode Kempa Langsung [Skripsi]. Universitas Islam Indonesia.
Rashid, I., Omari, M. M. H. A., & Badwan, A. A. (2013). From native to multifunctional starch-based excipients designed for direct compression formulation. Starch - Stärke, 65(7–8), 552–571. https://doi.org/10.1002/star.201200297
Rojas, J., Uribe, Y., & Zuluaga, A. (2012). Powder and compaction characteristics of pregelatinized starches. Die Pharmazie, 67(6), 513–517.
Rowe, R. C., Sheskey, P. J., & Quinn, M. E. (Eds.). (2009). Handbook of pharmaceutical excipients (6. ed). APhA, (PhP) Pharmaceutical Press.
Šantl, M., Ilić, I., Vrečer, F., & Baumgartner, S. (2011). A compressibility and compactibility study of real tableting mixtures: The impact of wet and dry granulation versus a direct tableting mixture. International Journal of Pharmaceutics, 414(1–2), 131–139. https://doi.org/10.1016/j.ijpharm.2011.05.025
Santos, T. P. R. d., Franco, C. M. L., Demiate, I. M., Li, X., Garcia, E. L., Jane, J.-L., & Leonel, M. (2018). Spray-drying and extrusion processes: Effects on morphology and physicochemical characteristics of starches isolated from Peruvian carrot and cassava. International Journal of Biological Macromolecules, 118, 1346–1353. https://doi.org/10.1016/j.ijbiomac.2018.06.070
Short, R. W. P., & Verbanac, F. (1978). Precompacted-starch binder-disintegrant-filler material for direct compression tablets and dry dosage capsules (United States Patent No. US4072535A). https://patents.google.com/patent/US4072535/en?oq=u.s.+4%2c072%2c535
Sulaiman, T. N. S., Wahyuono, W., Bestari, A. N., & Aziza, F. N. (2022). Preparation and Characterization of Pregelatinized Sago Starch (PSS) from Native Sago Starch (NSS) (Metroxylon sp.) and its Evaluation as Tablet Disintegrant and Filler-Binder on Direct Compression Tablet. Indonesian Journal of Pharmacy, 33(2), 251–260. https://doi.org/10.22146/ijp.3543
Suñé Neģre, J. M., Roiģ Carreras, M., García, R. F., Montoya, E. G., Lozano, P. P., Aģuilar, J. E., Carmona, M. M., & Ticó Grau, J. R. (2013). 5 - SeDeM Diagram: An expert system for preformation, characterization and optimization of tablets obtained by direct compression. In J. E. Aguilar (Ed.), Formulation Tools for Pharmaceutical Development (pp. 109–135). Woodhead Publishing. https://doi.org/10.1533/9781908818508.109
Swinkels, J. J. M. (1985). Composition and Properties of Commercial Native Starches. Starch - Stärke, 37(1), 1–5. https://doi.org/10.1002/star.19850370102
U.S. Pharmacopeia. (2018). The United States Pharmacopeia, USP 41/The National Formulary, NF 36. MD United States Pharmacopeial Convention.
Voigt, R. (1995). Buku Pelajaran Teknologi Farmasi. Gadjah Mada University.
Wootton, M., & Bamunuarachchi, A. (1978). Water Binding Capacity of Commercial Produced Native and Modified Starches. Starch - Stärke, 30(9), 306–309. https://doi.org/10.1002/star.19780300905
Xia, W., Wang, F., Li, J., Wei, X., Fu, T., Cui, L., Li, T., & Liu, Y. (2015). Effect of high speed jet on the physical properties of tapioca starch. Food Hydrocolloids, 49, 35–41. https://doi.org/10.1016/j.foodhyd.2015.03.010
Zhang, X., Tong, Q., Zhu, W., & Ren, F. (2013). Pasting, rheological properties and gelatinization kinetics of tapioca starch with sucrose or glucose. Journal of Food Engineering, 114(2), 255–261. https://doi.org/10.1016/j.jfoodeng.2012.08.002
Zhang, Y., Xiao, C., Bindzus, W., & Green, V. (2006). Tablet excipient (United States Patent No. US20060008521A1). https://patents.google.com/patent/US20060008521A1/en
Published
2023-03-31
How to Cite
Sulaiman, T. N. S., Mawarni, G. K., & Rumiyati, R. (2023). Optimization and Characterization of Extruded Partially Pregelatinized Cassava Starch as Filler-Binder. Indonesian Journal of Pharmacy, 34(1), 79-92. https://doi.org/10.22146/ijp.5117
Section
Research Article

Most read articles by the same author(s)